江蘇省蘇州市區(qū)~重點中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第1頁
江蘇省蘇州市區(qū)~重點中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第2頁
江蘇省蘇州市區(qū)~重點中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第3頁
江蘇省蘇州市區(qū)~重點中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第4頁
江蘇省蘇州市區(qū)~重點中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省蘇州市區(qū)~重點中學2024屆中考數(shù)學最后沖刺模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.甲、乙兩人沿相同的路線由A地到B地勻速前進,A、B兩地間的路程為40km.他們前進的路程為s(km),甲出發(fā)后的時間為t(h),甲、乙前進的路程與時間的函數(shù)圖象如圖所示.根據(jù)圖象信息,下列說法不正確的是()A.甲的速度是10km/h B.乙的速度是20km/hC.乙出發(fā)h后與甲相遇 D.甲比乙晚到B地2h2.在平面直角坐標系中,點是線段上一點,以原點為位似中心把放大到原來的兩倍,則點的對應點的坐標為()A. B.或C. D.或3.已知點、都在反比例函數(shù)的圖象上,則下列關系式一定正確的是()A. B. C. D.4.如圖,在Rt△ABC中,∠ACB=90°,點D,E分別是AB,BC的中點,點F是BD的中點.若AB=10,則EF=()A.2.5 B.3 C.4 D.55.某校八年級兩個班,各選派10名學生參加學校舉行的“古詩詞”大賽,各參賽選手成績的數(shù)據(jù)分析如表所示,則以下判斷錯誤的是()班級平均數(shù)中位數(shù)眾數(shù)方差八(1)班94939412八(2)班9595.5938.4A.八(2)班的總分高于八(1)班B.八(2)班的成績比八(1)班穩(wěn)定C.兩個班的最高分在八(2)班D.八(2)班的成績集中在中上游6.的一個有理化因式是()A. B. C. D.7.如果k<0,b>0,那么一次函數(shù)y=kx+b的圖象經(jīng)過()A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限8.如圖直線y=mx與雙曲線y=交于點A、B,過A作AM⊥x軸于M點,連接BM,若S△AMB=2,則k的值是()A.1 B.2 C.3 D.49.某商店有兩個進價不同的計算器都賣了80元,其中一個贏利60%,另一個虧本20%,在這次買賣中,這家商店()A.賺了10元 B.賠了10元 C.賺了50元 D.不賠不賺10.如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為()(精確到0.1米,參考數(shù)據(jù):)A.30.6米 B.32.1米 C.37.9米 D.39.4米二、填空題(本大題共6個小題,每小題3分,共18分)11.我們知道:1+3=4,1+3+5=9,1+3+5+7=16,…,觀察下面的一列數(shù):-1,2,,-3,4,-5,6…,將這些數(shù)排列成如圖的形式,根據(jù)其規(guī)律猜想,第20行從左到右第3個數(shù)是.12.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連結BD、DP,BD與CF相交于點H,給出下列結論:①△DFP~△BPH;②;③PD2=PH?CD;④,其中正確的是______(寫出所有正確結論的序號).13.如圖,AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于點C,若OC=6,則AB的長等于__.14.如圖,ABCD是菱形,AC是對角線,點E是AB的中點,過點E作對角線AC的垂線,垂足是點M,交AD邊于點F,連結DM.若∠BAD=120°,AE=2,則DM=__.15.如圖所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步驟作圖:①以點A為圓心,小于AC的長為半徑畫弧,分別交AB,AC于點E,F;②分別以點E,F為圓心,大于EF的長為半徑畫弧,兩弧相交于點G;③作射線AG交BC邊于點D.則∠ADC的度數(shù)為.

16.比較大?。?1.(填“>”,“<”或“=”)三、解答題(共8題,共72分)17.(8分)在以“關愛學生、安全第一”為主題的安全教育宣傳月活動中,某學校為了了解本校學生的上學方式,在全校范圍內隨機抽查部分學生,了解到上學方式主要有:A:結伴步行、B:自行乘車、C:家人接送、D:其他方式,并將收集的數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列問題:(1)本次抽查的學生人數(shù)是多少人?(2)請補全條形統(tǒng)計圖;請補全扇形統(tǒng)計圖;(3)“自行乘車”對應扇形的圓心角的度數(shù)是度;(4)如果該校學生有2000人,請你估計該?!凹胰私铀汀鄙蠈W的學生約有多少人?18.(8分)某學校為弘揚中國傳統(tǒng)詩詞文化,在九年級隨機抽查了若干名學生進行測試,然后把測試結果分為4個等級;A、B、C、D,對應的成績分別是9分、8分、7分、6分,并將統(tǒng)計結果繪制成兩幅如圖所示的統(tǒng)計圖.請結合圖中的信息解答下列問題:(1)本次抽查測試的學生人數(shù)為,圖①中的a的值為;(2)求統(tǒng)計所抽查測試學生成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).19.(8分)如圖,在△ABC中,以AB為直徑的⊙O交BC于點D,交CA的延長線于點E,過點D作DH⊥AC于點H,且DH是⊙O的切線,連接DE交AB于點F.(1)求證:DC=DE;(2)若AE=1,,求⊙O的半徑.20.(8分)為弘揚中華傳統(tǒng)文化,黔南州近期舉辦了中小學生“國學經(jīng)典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式分“單人組”和“雙人組”.(1)小麗參加“單人組”,她從中隨機抽取一個比賽項目,恰好抽中“三字經(jīng)”的概率是多少?(2)小紅和小明組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或列表的方法進行說明.21.(8分)如圖,M、N為山兩側的兩個村莊,為了兩村交通方便,根據(jù)國家的惠民政策,政府決定打一直線涵洞.工程人員為了計算工程量,必須計算M、N兩點之間的直線距離,選擇測量點A、B、C,點B、C分別在AM、AN上,現(xiàn)測得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N兩點之間的距離.22.(10分)華聯(lián)超市準備代銷一款運動鞋,每雙的成本是170元,為了合理定價,投放市場進行試銷.據(jù)市場調查,銷售單價是200元時,每天的銷售量是40雙,而銷售單價每降低1元,每天就可多售出5雙,設每雙降低x元(x為正整數(shù)),每天的銷售利潤為y元.求y與x的函數(shù)關系式;每雙運動鞋的售價定為多少元時,每天可獲得最大利潤?最大利潤是多少?23.(12分)如圖,AC是⊙O的直徑,點P在線段AC的延長線上,且PC=CO,點B在⊙O上,且∠CAB=30°.(1)求證:PB是⊙O的切線;(2)若D為圓O上任一動點,⊙O的半徑為5cm時,當弧CD長為時,四邊形ADPB為菱形,當弧CD長為時,四邊形ADCB為矩形.24.計算:﹣(﹣2016)0+|﹣3|﹣4cos45°.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】由圖可知,甲用4小時走完全程40km,可得速度為10km/h;乙比甲晚出發(fā)一小時,用1小時走完全程,可得速度為40km/h.故選B2、B【解題分析】分析:根據(jù)位似變換的性質計算即可.詳解:點P(m,n)是線段AB上一點,以原點O為位似中心把△AOB放大到原來的兩倍,則點P的對應點的坐標為(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故選B.點睛:本題考查的是位似變換、坐標與圖形的性質,在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k.3、A【解題分析】分析:根據(jù)反比例函數(shù)的性質,可得答案.詳解:由題意,得k=-3,圖象位于第二象限,或第四象限,在每一象限內,y隨x的增大而增大,∵3<6,∴x1<x2<0,故選A.點睛:本題考查了反比例函數(shù),利用反比例函數(shù)的性質是解題關鍵.4、A【解題分析】

先利用直角三角形的性質求出CD的長,再利用中位線定理求出EF的長.【題目詳解】∵∠ACB=90°,D為AB中點∴CD=1∵點E、F分別為BC、BD中點∴EF=1故答案為:A.【題目點撥】本題考查的知識點是直角三角形的性質和中位線定理,解題關鍵是尋找EF與題目已知長度的線段的數(shù)量關系.5、C【解題分析】

直接利用表格中數(shù)據(jù),結合方差的定義以及算術平均數(shù)、中位數(shù)、眾數(shù)得出答案.【題目詳解】A選項:八(2)班的平均分高于八(1)班且人數(shù)相同,所以八(2)班的總分高于八(1)班,正確;

B選項:八(2)班的方差比八(1)班小,所以八(2)班的成績比八(1)班穩(wěn)定,正確;

C選項:兩個班的最高分無法判斷出現(xiàn)在哪個班,錯誤;

D選項:八(2)班的中位數(shù)高于八(1)班,所以八(2)班的成績集中在中上游,正確;

故選C.【題目點撥】考查了方差的定義以及算術平均數(shù)、中位數(shù)、眾數(shù),利用表格獲取正確的信息是解題關鍵.6、B【解題分析】

找出原式的一個有理化因式即可.【題目詳解】的一個有理化因式是,故選B.【題目點撥】此題考查了分母有理化,熟練掌握有理化因式的取法是解本題的關鍵.7、D【解題分析】

根據(jù)k、b的符號來求確定一次函數(shù)y=kx+b的圖象所經(jīng)過的象限.【題目詳解】∵k<0,

∴一次函數(shù)y=kx+b的圖象經(jīng)過第二、四象限.

又∵b>0時,

∴一次函數(shù)y=kx+b的圖象與y軸交與正半軸.

綜上所述,該一次函數(shù)圖象經(jīng)過第一、二、四象限.

故選D.【題目點撥】本題主要考查一次函數(shù)圖象在坐標平面內的位置與k、b的關系.解答本題注意理解:直線y=kx+b所在的位置與k、b的符號有直接的關系.k>0時,直線必經(jīng)過一、三象限.k<0時,直線必經(jīng)過二、四象限.b>0時,直線與y軸正半軸相交.b=0時,直線過原點;b<0時,直線與y軸負半軸相交.8、B【解題分析】

此題可根據(jù)反比例函數(shù)圖象的對稱性得到A、B兩點關于原點對稱,再由S△ABM=1S△AOM并結合反比例函數(shù)系數(shù)k的幾何意義得到k的值.【題目詳解】根據(jù)雙曲線的對稱性可得:OA=OB,則S△ABM=1S△AOM=1,S△AOM=|k|=1,則k=±1.又由于反比例函數(shù)圖象位于一三象限,k>0,所以k=1.故選B.【題目點撥】本題主要考查了反比例函數(shù)y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€知識點.9、A【解題分析】試題分析:第一個的進價為:80÷(1+60%)=50元,第二個的進價為:80÷(1-20%)=100元,則80×2-(50+100)=10元,即盈利10元.考點:一元一次方程的應用10、D【解題分析】解:延長AB交DC于H,作EG⊥AB于G,如圖所示,則GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,設BH=x米,則CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解題分析】

先求出19行有多少個數(shù),再加3就等于第20行第三個數(shù)是多少.然后根據(jù)奇偶性來決定負正.【題目詳解】∵1行1個數(shù),2行3個數(shù),3行5個數(shù),4行7個數(shù),…19行應有2×19-1=37個數(shù)∴到第19行一共有1+3+5+7+9+…+37=19×19=1.第20行第3個數(shù)的絕對值是1+3=2.又2是偶數(shù),故第20行第3個數(shù)是2.12、①②③【解題分析】

依據(jù)∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH;依據(jù)△DFP∽△BPH,可得,再根據(jù)BP=CP=CD,即可得到;判定△DPH∽△CPD,可得,即PD2=PH?CP,再根據(jù)CP=CD,即可得出PD2=PH?CD;根據(jù)三角形面積計算公式,結合圖形得到△BPD的面積=△BCP的面積+△CDP面積﹣△BCD的面積,即可得出.【題目詳解】∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故①正確;∵∠DCF=90°﹣60°=30°,∴tan∠DCF=,∵△DFP∽△BPH,∴,∵BP=CP=CD,∴,故②正確;∵PC=DC,∠DCP=30°,∴∠CDP=75°,又∵∠DHP=∠DCH+∠CDH=75°,∴∠DHP=∠CDP,而∠DPH=∠CPD,∴△DPH∽△CPD,∴,即PD2=PH?CP,又∵CP=CD,∴PD2=PH?CD,故③正確;如圖,過P作PM⊥CD,PN⊥BC,設正方形ABCD的邊長是4,△BPC為正三角形,則正方形ABCD的面積為16,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB?sin60°=4×=2,PM=PC?sin30°=2,∵S△BPD=S四邊形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×4×2+×2×4﹣×4×4=4+4﹣8=4﹣4,∴,故④錯誤,故答案為:①②③.【題目點撥】本題考查了正方形的性質、相似三角形的判定與性質、解直角三角形等知識,正確添加輔助線、靈活運用相關的性質定理與判定定理是解題的關鍵.13、18【解題分析】連接OB,∵OA=OB,∴∠B=∠A=30°,∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,∴∠BOC=∠B,∴CB=OC=6,∴AB=AC+BC=18,故答案為18.14、.【解題分析】

作輔助線,構建直角△DMN,先根據(jù)菱形的性質得:∠DAC=60°,AE=AF=2,也知菱形的邊長為4,利用勾股定理求MN和DN的長,從而計算DM的長.【題目詳解】解:過M作MN⊥AD于N,∵四邊形ABCD是菱形,∴∵EF⊥AC,∴AE=AF=2,∠AFM=30°,∴AM=1,Rt△AMN中,∠AMN=30°,∴∵AD=AB=2AE=4,∴由勾股定理得:故答案為【題目點撥】本題主要考查了菱形的性質,等腰三角形的性質,勾股定理及直角三角形30度角的性質,熟練掌握直角三角形中30°所對的直角邊是斜邊的一半.15、65°【解題分析】

根據(jù)已知條件中的作圖步驟知,AG是∠CAB的平分線,根據(jù)角平分線的性質解答即可.【題目詳解】根據(jù)已知條件中的作圖步驟知,AG是∠CAB的平分線,∵∠CAB=50°,

∴∠CAD=25°;

在△ADC中,∠C=90°,∠CAD=25°,

∴∠ADC=65°(直角三角形中的兩個銳角互余);

故答案是:65°.16、>【解題分析】試題分析:根據(jù)二次根式的性質可知,被開方數(shù)越大,所對應的二次根式就越大,因此可判斷2與1=1的大小為2>1.考點:二次根式的大小比較三、解答題(共8題,共72分)17、(1)本次抽查的學生人數(shù)是120人;(2)見解析;(3)126;(4)該?!凹胰私铀汀鄙蠈W的學生約有500人.【解題分析】

(1)本次抽查的學生人數(shù):18÷15%=120(人);(2)A:結伴步行人數(shù)120﹣42﹣30﹣18=30(人),據(jù)此補全條形統(tǒng)計圖;(3)“自行乘車”對應扇形的圓心角的度數(shù)360°×=126°;(4)估計該?!凹胰私铀汀鄙蠈W的學生約有:2000×25%=500(人).【題目詳解】解:(1)本次抽查的學生人數(shù):18÷15%=120(人),答:本次抽查的學生人數(shù)是120人;(2)A:結伴步行人數(shù)120﹣42﹣30﹣18=30(人),補全條形統(tǒng)計圖如下:“結伴步行”所占的百分比為×100%=25%;“自行乘車”所占的百分比為×100%=35%,

“自行乘車”在扇形統(tǒng)計圖中占的度數(shù)為360°×35%=126°,補全扇形統(tǒng)計圖,如圖所示;(3)“自行乘車”對應扇形的圓心角的度數(shù)360°×=126°,故答案為126;(4)估計該?!凹胰私铀汀鄙蠈W的學生約有:2000×25%=500(人),答:該?!凹胰私铀汀鄙蠈W的學生約有500人.【題目點撥】本題主要考查條形統(tǒng)計圖及扇形統(tǒng)計圖及相關計算,用樣本估計總體.解題的關鍵是讀懂統(tǒng)計圖,從條形統(tǒng)計圖中得到必要的信息是解決問題的關鍵.18、(1)50、2;(2)平均數(shù)是7.11;眾數(shù)是1;中位數(shù)是1.【解題分析】

(1)根據(jù)A等級人數(shù)及其百分比可得總人數(shù),用C等級人數(shù)除以總人數(shù)可得a的值;(2)根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的定義計算可得.【題目詳解】(1)本次抽查測試的學生人數(shù)為14÷21%=50人,a%=×100%=2%,即a=2.故答案為50、2;(2)觀察條形統(tǒng)計圖,平均數(shù)為=7.11.∵在這組數(shù)據(jù)中,1出現(xiàn)了20次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)是1.∵將這組數(shù)據(jù)從小到大的順序排列,其中處于中間的兩個數(shù)都是1,∴=1,∴這組數(shù)據(jù)的中位數(shù)是1.【題目點撥】本題考查了眾數(shù)、平均數(shù)和中位數(shù)的定義.用到的知識點:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).19、(1)見解析;(2).【解題分析】

(1)連接OD,由DH⊥AC,DH是⊙O的切線,然后由平行線的判定與性質可證∠C=∠ODB,由圓周角定理可得∠OBD=∠DEC,進而∠C=∠DEC,可證結論成立;(2)證明△OFD∽△AFE,根據(jù)相似三角形的性質即可求出圓的半徑.【題目詳解】(1)證明:連接OD,由題意得:DH⊥AC,由且DH是⊙O的切線,∠ODH=∠DHA=90°,∴∠ODH=∠DHA=90°,∴OD∥CA,∴∠C=∠ODB,∵OD=OB,∴∠OBD=∠ODB,∴∠OBD=∠C,∵∠OBD=∠DEC,∴∠C=∠DEC,∴DC=DE;(2)解:由(1)可知:OD∥AC,∴∠ODF=∠AEF,∵∠OFD=∠AFE,∴△OFD∽△AFE,∴,∵AE=1,∴OD=,∴⊙O的半徑為.【題目點撥】本題考查了切線的性質,平行線的判定與性質,等腰三角形的性質與判定,圓周角定理的推論,相似三角形的判定與性質,難度中等,熟練掌握各知識點是解答本題的關鍵.20、(1);(2).【解題分析】

(1)直接利用概率公式求解;(2)先畫樹狀圖展示所有12種等可能的結果數(shù),再找出恰好小紅抽中“唐詩”且小明抽中“宋詞”的結果數(shù),然后根據(jù)概率公式求解.【題目詳解】(1)她從中隨機抽取一個比賽項目,恰好抽中“三字經(jīng)”的概率=;(2)畫樹狀圖為:共有12種等可能的結果數(shù),其中恰好小紅抽中“唐詩”且小明抽中“宋詞”的結果數(shù)為1,所以恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率=.21、1.5千米【解題分析】

先根據(jù)相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性質解答即可【題目詳

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論