




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
試卷第=page11頁,共=sectionpages33頁試卷第=page11頁,共=sectionpages33頁第32課平面向量的數(shù)量積及應用舉例學校:___________姓名:___________班級:___________考號:___________【基礎鞏固】1.(2022·全國·高考真題(文))已知向量SKIPIF1<0,則SKIPIF1<0(
)A.2 B.3 C.4 D.5【答案】D【分析】先求得SKIPIF1<0,然后求得SKIPIF1<0.【詳解】因為SKIPIF1<0,所以SKIPIF1<0.故選:D2.(2022·遼寧·大連市一0三中學模擬預測)已知單位向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的夾角為(
)A.30° B.60° C.120° D.150°【答案】C【分析】根據(jù)數(shù)量積的運算律及夾角公式計算可得;【詳解】解:因為SKIPIF1<0,SKIPIF1<0為單位向量,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0;故選:C3.(2022·全國·高考真題(理))已知向量SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.2【答案】C【分析】根據(jù)給定模長,利用向量的數(shù)量積運算求解即可.【詳解】解:∵SKIPIF1<0,又∵SKIPIF1<0∴9SKIPIF1<0,∴SKIPIF1<0故選:C.4.(2022·山東濰坊·模擬預測)定義:SKIPIF1<0,其中SKIPIF1<0為向量SKIPIF1<0與SKIPIF1<0的夾角.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由向量數(shù)量積定義可構(gòu)造方程求得SKIPIF1<0,由此可得SKIPIF1<0,根據(jù)SKIPIF1<0可求得結(jié)果.【詳解】SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:D.5.(2022·江蘇·南京市天印高級中學模擬預測)已知平面向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.3【答案】C【分析】由SKIPIF1<0求解.【詳解】解:因為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故選:C6.(2022·湖南·長沙縣第一中學模擬預測)已知△ABC中,SKIPIF1<0,AB=4,AC=6,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.12 B.14 C.16 D.18【答案】B【分析】以SKIPIF1<0,SKIPIF1<0為基底表示SKIPIF1<0,再與SKIPIF1<0求數(shù)量積即可.【詳解】解:SKIPIF1<0,且SKIPIF1<0所以:SKIPIF1<0.故選:B.7.(2022·北京·高考真題)在SKIPIF1<0中,SKIPIF1<0.P為SKIPIF1<0所在平面內(nèi)的動點,且SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】依題意建立平面直角坐標系,設SKIPIF1<0,表示出SKIPIF1<0,SKIPIF1<0,根據(jù)數(shù)量積的坐標表示、輔助角公式及正弦函數(shù)的性質(zhì)計算可得;【詳解】解:依題意如圖建立平面直角坐標系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓上運動,設SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;故選:D8.(2022·江蘇無錫·模擬預測)八角星紋是大汶口文化中期彩陶紋樣中具有鮮明特色的花紋.八角星紋常繪于彩陶盆和豆的上腹,先于器外的上腹施一圈紅色底襯,然后在上面繪并列的八角星形的單獨紋樣.八角星紋以白彩繪成,黑線勾邊,中為方形或圓形,具有向四面八方擴張的感覺.八角星紋延續(xù)的時間較長,傳播范圍亦廣,在長江以南的時間稍晚的崧澤文化的陶豆座上也屢見刻有八角大汶口文化八角星紋星紋.圖2是圖1抽象出來的圖形,在圖2中,圓中各個三角形為等腰直角三角形,中間陰影部分是正方形且邊長為2,其中動點P在圓SKIPIF1<0上,定點A、B所在位置如圖所示,則SKIPIF1<0最大值為(
)A.9 B.10 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由題意可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設SKIPIF1<0的夾角為SKIPIF1<0,SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0=SKIPIF1<0-SKIPIF1<0,分SKIPIF1<0在SKIPIF1<0所對的優(yōu)弧上和SKIPIF1<0在SKIPIF1<0所對的劣弧上兩種情況計算即可得答案.【詳解】解:如圖所示:連接SKIPIF1<0,因為中間陰影部分是正方形且邊長為2,所以可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,在SKIPIF1<0中由余弦定理可得SKIPIF1<0,所以SKIPIF1<0,設SKIPIF1<0的夾角為SKIPIF1<0,SKIPIF1<0的夾角為SKIPIF1<0,SKIPIF1<0=SKIPIF1<0=SKIPIF1<0-SKIPIF1<0,當SKIPIF1<0在SKIPIF1<0所對的優(yōu)弧上時,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0=SKIPIF1<0,所以SKIPIF1<0=SKIPIF1<0-SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,(其中SKIPIF1<0)所以SKIPIF1<0最大值為SKIPIF1<0;當SKIPIF1<0在SKIPIF1<0所對的劣弧上時,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0=SKIPIF1<0,所以SKIPIF1<0=SKIPIF1<0-SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,(其中SKIPIF1<0)所以SKIPIF1<0最大值為SKIPIF1<0;綜上所述:SKIPIF1<0最大值為SKIPIF1<0.故選:C.9.(多選)(2022·湖北·天門市教育科學研究院模擬預測)已知向量SKIPIF1<0,則下列說法正確的是(
)A.若SKIPIF1<0,則SKIPIF1<0的值為SKIPIF1<0B.若SKIPIF1<0則SKIPIF1<0的值為SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的夾角為銳角D.若SKIPIF1<0,則SKIPIF1<0【答案】AB【分析】根據(jù)向量的數(shù)量積、向量的模的坐標表示及向量共線的坐標表示一一判斷即可;【詳解】解:對于A:若SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故A正確;對于B:若SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故B正確;對于C:當SKIPIF1<0時SKIPIF1<0與SKIPIF1<0同向,此時SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,故C錯誤;對于D:若SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,當SKIPIF1<0時SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,顯然SKIPIF1<0,當SKIPIF1<0時SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,此時SKIPIF1<0,故D錯誤;故選:AB10.(多選)(2022·山東聊城·三模)在平面四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】根據(jù)所給的條件,判斷出四邊形SKIPIF1<0內(nèi)部的幾何關(guān)系即可.【詳解】因為SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0為等邊三角形,則SKIPIF1<0,故A正確;因為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,故B正確;根據(jù)以上分析作圖如下:由于SKIPIF1<0與SKIPIF1<0不平行,故C錯誤;建立如上圖所示的平面直角坐標系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故D正確;故選:ABD.11.(2022·全國·高考真題(文))已知向量SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0______________.【答案】SKIPIF1<0【分析】直接由向量垂直的坐標表示求解即可.【詳解】由題意知:SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.12.(2022·全國·高考真題(理))設向量SKIPIF1<0,SKIPIF1<0的夾角的余弦值為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0_________.【答案】SKIPIF1<0【分析】設SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,依題意可得SKIPIF1<0,再根據(jù)數(shù)量積的定義求出SKIPIF1<0,最后根據(jù)數(shù)量積的運算律計算可得.【詳解】解:設SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,因為SKIPIF1<0與SKIPIF1<0的夾角的余弦值為SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.13.(2022·湖南株洲·一模)如圖所示,一個物體被兩根輕質(zhì)細繩拉住,且處于平衡狀態(tài).已知兩條繩上的拉力分別是SKIPIF1<0,且SKIPIF1<0與水平夾角均為SKIPIF1<0,SKIPIF1<0,則物體的重力大小為_________N.【答案】20【解析】根據(jù)力的平衡有SKIPIF1<0,兩邊平方后可求出SKIPIF1<0.【詳解】由題意知SKIPIF1<0.SKIPIF1<0的夾角為SKIPIF1<0.所以SKIPIF1<0.所以SKIPIF1<0.所以SKIPIF1<0.故答案為:20.14.(2022·山東青島·二模)若SKIPIF1<0是邊長為2的等邊三角形,AD為BC邊上的中線,M為AD的中點,則SKIPIF1<0的值為___________.【答案】SKIPIF1<0【分析】已知SKIPIF1<0是邊長為2的等邊三角形,SKIPIF1<0為SKIPIF1<0邊上的中線,SKIPIF1<0為SKIPIF1<0的中點,則SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,然后結(jié)合平面向量數(shù)量積的運算求解即可.【詳解】解:已知SKIPIF1<0是邊長為2的等邊三角形,SKIPIF1<0為SKIPIF1<0邊上的中線,SKIPIF1<0為SKIPIF1<0的中點,則SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,故答案為:SKIPIF1<0.15.(2022·浙江省杭州學軍中學模擬預測)已知SKIPIF1<0,則向量SKIPIF1<0的范圍是____________.【答案】SKIPIF1<0【分析】設出SKIPIF1<0,利用向量數(shù)量積運算法則得到SKIPIF1<0,利用SKIPIF1<0求出取值范圍.【詳解】設SKIPIF1<0,所以SKIPIF1<0①,一方面,SKIPIF1<0,當且僅當SKIPIF1<0與SKIPIF1<0同向,SKIPIF1<0與SKIPIF1<0同向時取得最大值,另一方面,SKIPIF1<0,其中SKIPIF1<0,當且僅當SKIPIF1<0與SKIPIF1<0反向時取得最小值.故SKIPIF1<0.故答案為:SKIPIF1<016.(2022·廣東佛山·高三期末)菱形SKIPIF1<0中,SKIPIF1<0,點E,F(xiàn)分別是線段SKIPIF1<0上的動點(包括端點),SKIPIF1<0,則SKIPIF1<0___________,SKIPIF1<0的最小值為___________.【答案】
0
SKIPIF1<0【分析】建立坐標系,用坐標表示向量,第一個空利用向量數(shù)量積坐標公式進行相應計算,第二個空設出SKIPIF1<0,表達出SKIPIF1<0,利用二次函數(shù)的性質(zhì)求最小值SKIPIF1<0,再結(jié)合SKIPIF1<0求出最小值.【詳解】以A為坐標原點,AB所在直線為x軸,垂直AB所在直線為y軸建立平面直角坐標系,故SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;SKIPIF1<0因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故當SKIPIF1<0時,SKIPIF1<0取得最小值為SKIPIF1<0,因為SKIPIF1<0,所以當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0最小,最小值為SKIPIF1<0故答案為:0,SKIPIF1<017.(2022·全國·高三專題練習)在SKIPIF1<0中,設SKIPIF1<0.(1)求證:SKIPIF1<0為等腰三角形;(2)若SKIPIF1<0且SKIPIF1<0,求SKIPIF1<0的取值范圍.【解】(1)因為SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0為等腰三角形,(2)因為SKIPIF1<0,所以SKIPIF1<0,設SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.【素養(yǎng)提升】1.(多選)(2022·全國·高三專題練習)點SKIPIF1<0在△SKIPIF1<0所在的平面內(nèi),則以下說法正確的有(
)A.若動點SKIPIF1<0滿足SKIPIF1<0,則動點SKIPIF1<0的軌跡一定經(jīng)過△SKIPIF1<0的垂心;B.若SKIPIF1<0,則點SKIPIF1<0為△SKIPIF1<0的內(nèi)心;C.若SKIPIF1<0,則點SKIPIF1<0為△SKIPIF1<0的外心;D.若動點SKIPIF1<0滿足SKIPIF1<0,則動點SKIPIF1<0的軌跡一定經(jīng)過△SKIPIF1<0的重心.【答案】BC【分析】A由正弦定理知SKIPIF1<0,且SKIPIF1<0,代入已知等式得SKIPIF1<0,即知SKIPIF1<0的軌跡一定經(jīng)過的哪種心;B、C分別假設SKIPIF1<0為△SKIPIF1<0的內(nèi)心、外心,利用向量的幾何圖形中的關(guān)系,及向量的運算律和數(shù)量積判斷條件是否成立即可;D由SKIPIF1<0,根據(jù)數(shù)量積的運算律及向量數(shù)量積的幾何意義求SKIPIF1<0的值,即知SKIPIF1<0的軌跡一定經(jīng)過的哪種心;【詳解】A:由正弦定理知SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,即動點SKIPIF1<0的軌跡一定經(jīng)過△SKIPIF1<0的重心,故錯誤.B:若SKIPIF1<0為△SKIPIF1<0的內(nèi)心,如下圖示:SKIPIF1<0,同理SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,故正確;C:若SKIPIF1<0為△SKIPIF1<0的外心,SKIPIF1<0分別為SKIPIF1<0的中點,則SKIPIF1<0,而SKIPIF1<0,同理SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,正確;D:由SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,動點SKIPIF1<0的軌跡一定經(jīng)過△SKIPIF1<0的垂心,錯誤.故選:BC2.(2022·江蘇·常州高級中學模擬預測)設直角SKIPIF1<0,SKIPIF1<0是斜邊SKIPIF1<0上一定點.滿足SKIPIF1<0,則對于邊SKIPIF1<0上任一點P,恒有SKIPIF1<0,則斜邊SKIPIF1<0上的高是________.【答案】SKIPIF1<0【分析】取SKIPIF1<0中點SKIPIF1<0,根據(jù)SKIPIF1<0結(jié)合SKIPIF1<0可得SKIPIF1<0,再根據(jù)三角形中的比例性質(zhì)求解即可【詳解】取SKIPIF1<0中點SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,同理SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0恒成立,所以SKIPIF1<0.作SKIPIF1<0,則SKIPIF1<0為SKIPIF1<0中點,故SKIPIF1<0,所以SKIPIF1<0.又因為直角SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,即斜邊SKIPIF1<0上的高是SKIPIF1<0故答案為:SKIPIF1<03.(2022·浙江·模擬預測)已知平面向量SKIPIF1<0滿足SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最大值是__________.【答案】SKIPIF1<0【分析】由已知條件可設SKIPIF1<0,SKIPIF1<0.由已知可確定點C在以SKIPIF1<0為圓心,1為半徑的圓上,D在以SKIPIF1<0為圓心3為半徑的圓內(nèi)(含邊界),則所求即為圓面M內(nèi)一點與圓P上一點之間的距離,從而可得答案.【詳解】∵SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,則可設SKIPIF1<0,設SKIPIF1<0.由SKIPIF1<0知C在以SKIPIF1<0為圓心,1為半徑的圓上,取SKIPIF1<0的中點為SKIPIF1<0,由SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0所以D在以SKIPIF1<0為圓心3為半徑的圓內(nèi)(含邊界),如圖所示.作圓N關(guān)于x軸的對稱圓圓P,其中SKIPIF1<0,則SKIPIF1<0表示圓面M內(nèi)一點與圓P上一點之間的距離,所以SKIPIF1<0,即SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.4.(2022·湖北省仙桃中學模擬預測)如圖直角梯形ABCD中,EF是CD邊上長為6的可移動的線段,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍為________________.
【答案】SKIPIF1<0【分析】首先在SKIPIF1<0上取一點SKIPIF1<0,使得SKIPIF1<0,取SKIPIF1<0的中點SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,根據(jù)題意得到SKIPIF1<0,再根據(jù)SKIPIF1<0的最值求解即可.【詳解】在SKIPIF1<0上取一點SKIPIF1<0,使得SKIPIF1<0,取SKIPIF1<0的中點SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,如圖所示:則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0取得最小值,此時SKIPIF1<0,所以SKIPIF1<0.當SKIPIF1<0與SKIPIF1<0重合時,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0與SKIPIF1<0重合時,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<05.(2022·天津市第四中學模擬預測)如圖,已知SKIPIF1<0,SKIPIF1<0是直角SKIPIF1<0兩邊上的動點,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為___________.【答案】SKIPIF1<0【分析】以點SKIPIF1<0為原點,SKIPIF1<0,SKIPIF1<0所在直線為SKIPIF1<0軸,SKIPIF1<0軸建立平面直角坐標系,設SKIPIF1<0,利用三角函數(shù)關(guān)系表示SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的坐標,由題干條件分析可知SKIPIF1<0為SKIPIF1<0的中點,SKIPIF1<0為SKIPIF1<0的中點,即可得到SKIPIF1<0,SKIPIF1<0的坐標,進而得到SKIPIF1<0與SKIPIF1<0,整理可得SKIPIF1<0為關(guān)于SKIPIF1<0的函數(shù),利用正弦型函數(shù)的性質(zhì)即可求得最大值.【詳解】如圖,以點SKIPIF1<0為原點,SKIPIF1<0,SKIPIF1<0所在直線為SKIPIF1<0軸,SKIPIF1<0軸建立平面直角坐標系,設SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,所以設SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.由題意可知SKIPIF1<0為SKIPIF1<0的中點,SKIPIF1<0為SKIPIF1<0的中點,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車行業(yè)合同樣本:會員服務協(xié)議
- 移動基站租賃合同書范本
- 城市老舊小區(qū)消防系統(tǒng)改造項目合同
- 幼兒園臨時教師聘任合同
- 新版民間房產(chǎn)抵押權(quán)轉(zhuǎn)讓合同
- 腎性水腫課件
- 智能化煤礦培訓課件下載
- 舊貨零售互聯(lián)網(wǎng)+創(chuàng)新實踐考核試卷
- 搪瓷器的創(chuàng)造思維與創(chuàng)意設計考核試卷
- 建筑施工現(xiàn)場安全監(jiān)測與預警考核試卷
- 2025年黑龍江交通職業(yè)技術(shù)學院單招職業(yè)技能測試題庫必考題
- 個人畫協(xié)議合同范本
- 2024-2025學年高一下學期開學第一節(jié)課(哪吒精神)主題班會課件
- 2024-2025學年山東省濰坊市高三上學期1月期末英語試題
- 2025-2030年中國青海省旅游行業(yè)市場現(xiàn)狀調(diào)查及發(fā)展趨向研判報告
- 人力資源部門2023年度招聘效果分析
- 2025年安徽碳鑫科技有限公司招聘筆試參考題庫含答案解析
- 2025年寒假實踐特色作業(yè)設計模板
- 成人腦室外引流護理-中華護理學會團體 標準
- 2024年甘肅省公務員考試《行測》真題及答案解析
- YB-4001.1-2007鋼格柵板及配套件-第1部分:鋼格柵板(中文版)
評論
0/150
提交評論