




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Chapter13
OverviewonmetabolismandPrinciplesofBioenergetics
)
BiochemistryLecture(Nov.15,2012)ATPThestudyofMetabolismandbioenergeticsiskeytounderstandlifeAhummingbirdcanstoreenoughfueltofly900kilometerswithoutrest!Biosynthesis&BiodegradationBioenergeticsDefiningMetabolismTheword“metabolism”means"change",or"overthrow".
Biochemically,itmeans:theentirehighlyintegratedandregulatednetworkofchemicaltransformationsoccurringinalivingorganism,throughwhichcellsgrowandreproduce,maintaintheirstructures,andrespondtotheirenvironment.SanctoriusSanctorius(1561-1636)
The“weighingchair"LouisPasteur(1822-1895)Yeastfermentationcatalyzedby“ferments”.FriedrichW?hler(1800-1882)
synthesisofureaEduardBuchner(1860-1917)Cell-freefermentationHansKrebs(1900-1981)Ureacycle&citricacidcycleMetabolismisarbitrarilydividedintotwocategories:TheYing&YangofMetabolism
Catabolism
(biodegradation):Reactionsinvolvingthebreakingdownoforganicsubstrates,typicallybyoxidativebreakdown,toprovidechemicallyavailableenergy(e.g.ATP)and/ortogeneratemetabolicintermediatesusedinsubsequentanabolic
reactions.Anabolism
(biosynthesis):Theprocessesthatresultinthesynthesisofcellularcomponentsfromprecursorsoflowermolecularweight(oftenviaendergonicreactionsandthusbeingenergyconsuming).Alivingcellcarriesoutthousandsofreactionssimultaneously,witheachreactionsequencecontrolledsothatunwantedaccumulationordeficienciesofintermediatesandproductsdonotoccur!!!Organismsareclassifiedasautotrophsandheterotrophsbasedontheirmetabolicfeatures(energyandcarbon)Autotrophs(“self-feeding”)—Deriveenergyfromsunlightorinorganicsubstances,andusingCO2assolecarbonsourcetoproducecomplexorganiccompounds;Includinggreenplants,algae,andcertainbacteria;Beingthe“producers”inthefoodchain.Heterotrophs(“feedingonothers”)—Deriveenergyandcarbonfromoxidationoforganiccompounds(madebyautotrophs);Includingallanimalsandmostbacteriaandfungi;Beingthe“consumers”inthefoodchain.“Producers”“Consumers”Metabolisminvariouslivingorganismsleadtotherecyclingofcarbon,oxygeninthebiosphere.
Autotrophs&heterophsareinterdependentoneachotherinthebiosphere.Metabolismleadstothecycling
ofnitrogeninthebiosphere
Therecyclingofmatterisdrivenbytheflowofenergyinonedirectionthroughthebiosphere,i.e.,beingconstantlytransformedintounusableformssuchasheat.GeneralFeaturesofMetabolism
Occursinspecificcellularlocationsasaseriesofenzyme-catalyzedpathways.Highlycoupledandinterconnected(“EveryroadleadstoRome”).Highlyregulated
toachievethebesteconomy(“Balancedsupplyanddemand”).Thenumberofreactionsislarge,however,thenumberoftypesofreactionsisrelativelysmall(whathappensinanimalrespirationhappensinplantphotosynthesis).Wellconserved
duringevolution(“whathappensinbacteriahappensinhumanbeing”).carbohydrateAminoacidsCoenzymes(vitamines)Aminoacidshormonesnucleotideslipids22ndeditiondesignedbyDr.DonaldE.NicholsonEnergyproductionThenetworkforallthemetabolicpathways
Thebasicroadmapofcentralmetabolicpathways:occurringinthreestagesDegradative&biosyntheticpathwaysarealwaysdistinct:forthermodynamicsandregulationreasons.PolymersMonomersUltimatedegradation(乙酰輔酶A)Metabolicpathwayscouldbeconvergent,divergentorcyclic.AnabolicreactionsareHighlydivergent!CatabolicreactionsareHighlyconvergent!MostbiochemicalreactionsfallintofivegeneralcategoriesMakingorbreakingofC-Cbonds;Intramolecularrearrangements(isomerizationandelimination);Occurviafree-radicalintermediates;Grouptransfer;Oxidation-reduction.Thebiochemicalreactionshavebeenproductsofevolutionaryselectionbasedontheirrelevanceforthelifeprocess,aswellastheirrates(afterbeingcatalyzedbyproperenzymes),i.e.,notalltheorganicreactionsyoulearnedinorganicchemistryoccurinlivingcells.ThousandsofbiochemicalreactionsmightoccurinthehumanComputationalpredictioninhumans:atotalof1653metabolicenzymes,only622ofwhichwereassignedrolesin135predictedmetabolicpathways.Uncharacterizedpathways?References:Romeroetal.,(2004)“Computationalpredictionofhumanmetabolicpathwaysfromthecompletehumangenome”,GenomeBiology,6:R2.2.Smith,E.andMorowitzj,H.J.(2004)“Universalityinintermediarymetabolism”,PNAS,101:13168–13173.3.Caetano-Anolles,G.,Kim,H.S.andMittenthal,J.E.(2007)“"Theoriginofmodernmetabolicnetworksinferredfromphylogenomicanalysisofproteinarchitecture".PNAS,104:9358–63.
IssuesforcurrentandfutureinvestigationonmetabolismObservationofmetabolicprocessesinintactlivingorganisms(e.g.,inthebrainsundervariousstates)Continuetounveilnewpathwaysandnewregulationstrategiesofmetabolism.Studiesonenzymes.Metabolismdifferencesamongvariousorganismsorvariousstatesofthesameorganism(fordiagnosingandtreatingsuchdiseasesascancer,infectionsofbacteriaorviruses,obesity,etc;tounderstandaging).Appropriateandinappropriatenutrition.Biotechnologicalapplicationofknowledgelearnedfrommetabolicstudiesinmedicine,agricultureandindustry.HowoneshouldlearnaboutmetabolismCompareandrelate(interconnect)thechemicalreactions(Whereareyouinthemetabolismnetwork?)Trytocontemplateonthewaysthelivingorganismsusedtoachieveabalancedanddynamicsteadystate(Howcouldthemultilayeredregulationcooperatesoeffectively?).Understandtheclassicalexperimentsandthoughtsthatledtotherevelationoftheknowledgedescribed(Whyhe/shewontheNobelPrize?).Beawareofthenatureofthedata(Couldtheinvitroobservationsbeextendedtowhathappensinvivo?).Understandtheaspectsthatneedfurtherstudies(HowcouldIwinaNobelPrize?).BioenergeticsThequantitativestudy(mainlyusingtheprinciplesofchemicalthermodynamics)ofenergytransductionsinlivingcellsandthephysical-chemicalnatureunderlyingtheseprocesses.
BioenergeticsbeganwithearlyquantitativestudiesonanimalrespirationLavoisierusedacalorimetertoestimateheatproduced(watermeltedfromice)bytheguineapig'smetabolism:Animalrespiration(transportofO2fromairtotissues,andCO2inoppositedirection)
isnothingbutslowcombustionofcarbonandhydrogen,likethatofacandleburning(1789).Keyissues:WhereisO2convertedtoCO2andH2Oinanimals?Whatcontributesthecarbonandhydrogen?
A.Lavoisier(1743-1794)Measuringheatproduced;O2takenin;H2Oproduced;CO2produced.Usingguineapig.Ascientificunderstandingofanimalrespiration(biologicaloxidation)Locationofbiologicaloxidation:
Lung→blood→alltissues→allcellsRevelationsofthemolecularmechanism:
HowO2participates(productionofCO2andH2O);Whatenzymes(cytochromes,dehydrogenases,etc)participate;Whataretherolesofironandlightabsorbingredoxcomponents(hemegroups);Whatsubcellularlocations(mitochondria);Howtostudyquantitativelyfortheenergytransformation(athermodynamicsapproach);etc.TheEnergyconceptwasestablishedbyphysicists(19thcentury)Anabstractnumericalphysicalquantity(indirectlyobserved)ormathematicalprinciplethatindicatetheabilityofasystemtodowork.Itisnotadescriptionofamechanismoranythingconcrete.Energycanneitherbecreatednordestroyed:Itcanonlybetransformedfromoneformtoanother(Helmholtz,1847;proposedinthecontextofhisstudiesonmusclemetabolism).TheGibbsfreeenergy--theenergythatcanbeconvertedintoworkatauniformtemperatureandpressurethroughoutasystem(Gibbs,1876).J.P.Joule(1818-1889)H.vonHelmholtz(1821-1894)J.W.Gibbs(1839-1903)TheGibbsfreeenergyconceptwasappliedtostudychemicalreactionsGibbsdevelopedthechemicalthermodynamics:relatingfreeenergychangewithequilibriumconstant.
G=
G'o+RTlnQ
(Q=[products]/[reactants])
G'o=-RTlnK'eq
(K'eq:equilibriumconstant)Theactualfreeenergychange(
G)
determineswhetherareactionoccursfavorably(orspontaneously).Thestandardfreeenergychange
inbiochemistry(
G'o)isaconstant(measuredunderastandardsetofconditions).
Gforareactioncanbelarger,smaller,orthesameas
G'o,dependingontheconcentrationsofthereactantsandproducts(Q:massactionratio).J.W.Gibbs(1839-1903)
AsmallchangeinstandardfreeenergyleadstoalargechangeinequilibriumconstantLivingorganismshavetoconsumeenergyTogenerateandmaintainitshighlyorderedstructure(biosynthesis).Togeneratemotion(mechanicalwork).Togenerateconcentrationandelectricalgradientsacrosscellmembranes(activetransport).Togenerateheatandlightincertainorganisms.The“energyindustry”(production,storageanduse)iscentraltotheeconomyofthecellsociety!
Livingorganismsconsumefreeenergy
Livingcellsaregenerallyheldatconstanttemperatureandpressure:chemicalenergy(Gibbsfreeenergy,
G-“availableenergy”)hastobeusedbylivingorganisms.Livingorganismsrequireacontinualinputoffreeenergy.Biologicalenergytransformationobeythetwobasiclawsofthermodynamics.Freeenergychangeinoxidation-reductionreactionscanbecalculatedbymeasuringthereductionpotentialReductionpotential(involtsormillivolts)measuresthetendencyofachemicalspeciestoacquireelectronsandtherebybereduced.Themorepositivethepotential,thegreaterthespecies'affinityforelectronsandtendencytobereduced.Standardreductionpotential(E'o)isdefinedrelativetoareferenceelectrode.e-e-E'o=0.00VE'o=0.00VpH7NegativeE'o
pH7positiveE'o
pH0pH0Standardreductionpotentialsofbiologicallyimportanthalf-reactionshavebeensystematicallymeasured.Theactualreductionpotential(E)ofeachhalf-reactioncanbecalculatedaccordingtotheNernstequation
Theactualreductionpotential(E')dependsonthestandardreductionpotential(E'o
),electronstransferredpermolecule(n),temperature(T),ratioof[reducedform]/[oxidizedform]:[reducedform][oxidizedform]E'E'oWaltherNernst(1864-1941)
G
ofaredoxreactioncanbedirectlycalculatedfromthevalueof
E
(=E
oftheelectronacceptor–E
oftheelectrondonor):
Gcanbecalculatedfrom
EusingtheNerstEquationWhen
Eispositive,
Gisnegative.Thethermodynamicsconceptsappliedinbiochemicalstudies(since1930s)BorsookandSchott(1931)Theroleoftheenzymeinthesuccinate-enzyme-fumarateequilibrium,J.Biol.Chem.92:535-557.Borsook,H.&Schott,H.F.(1931)Thefreeenergy,heat,andentropyofformationofl-malicacid.J.Biol.Chem.92:559-567.
Reductionpotentials,equilibriumconstants,heatcapacitiesmeasured,freeenergy,entropycalculated.Thethermodynamicconceptswereappliedinstudyingthesynthesisofproteins(1930s)BorsookandHuffman,(1938).Somethermodynamicalconsiderationsofaminoacids,peptides,andrelatedsubstances,in"ChemistryoftheAminoAcidsandProteins"(C.L.A.Schmist,editor)C.C.Thomas,Springfield,Ill.ItwasoriginallythoughtthesynthesisshouldoccurbyMassActioninreversal,ascatalyzedbyproteases,glycogenphosphorylases,andpolynucleotidephosphorylases.Itwaslaterrealizedthatthefreeenergychangeinhydrolysiswassolargethatonecouldnotgetsynthesisbyanyfeasibledegreeofconcentrationofaminoacids.Energyisneededtobeputintothesystem,viaacoupledreaction.Amountoffreeenergyexpendedtoformthepeptidebondsorphosphodiesterbondsinvivoisfarhigherthantheirstandardfreeenergyofformationinvitro,tobuyspecificityofthebondsformed!Adirectsourceofenergyformusclecontractionwassearched!Non-lacticmusclecontractionsattheexpenseofthedephosphorylationofcreatinephosphate(1930)
Lundsgaard,E.,Biochem.Z.217,162;227,51(1930).Frogmusclespoisonedwithiodoacetate(unabletosplitglucosetolacticacid)arecapableofcarryingoutcontractions!Aparallelbreakdownofcreatinephosphateobservedinthepresenceofiodoacetate.LundsgaardLacticaciddoesnotserveasanenergysourceformusclecontraction!CreatinephosphateArapidlymobilizablereserveofhigh-energyphosphatesinskeletalmuscleandthebrain.ATPdiscoveredinmuscle(1929)Lohmann,(1928)UederdasWorkommenundUmsatzvonPyrophosphatinderZelle,Biochem.Z,202:466-493;203:164-207.FiskeandSubbarow(1929)PhosphorusCompoundsofMuscleandLiver,Science,70:381–382.Langen&Hucho(2008)KarlLohmannandtheDiscoveryofATP,AngewandteChemie,47:1824-1827.
FromFiskeandSubbarowpaper.MyosinwasfoundtobeanATPaseEngelhardtWA,LiubimovaMN.(1939)Myosineandadenosinetriphosphatase,Nature,144:688
AcidificationtopHbelow4rapidlydestroysthisactivity;completelylostafter10minat37oC,butthepresentofATPstabilizesit.Engelhardt(1941):ThefreeenergycouplingandATPenergycurrencytheoriesproposed(1941)Lipmann,F.(1941).“MetabolicGenerationandUtilizationofPhosphateBondEnergy”.AdvancesinEnzymologyandRelatedSubjects,1:99-162.Kalckar,H,(1941).“TheNatureofEnergeticCouplinginBiologicalSynthesis”Chem.Rev.28:71-178.
“Energy-richphosphate”(likeATP)proposedtodriveenergy-requiringbiologicalprocesses(e.g,Musclecontraction,transportofionsandothermoleculesacrossmembranes,chemicalreactionforthebiosynthesisofproteinsandnucleicacids).Thebiologicaloxidoreduction(respiration)iscompulsorilycoupledtophosphorylation.
LipmannKalckarATPistheuniversalcurrencyforbiologicalenergyThiswasfirstperceivedbyFritzLipmannandHermanKalckarin1941whenstudyingglycolysis.Hydrolysisofthetwophosphoanhydride(磷酸酐鍵)bondsinATPgeneratemorestableproductsreleasinglargeamountoffreeenergy(
G'o
is-30.5kJ/mol;Gpincellsis-50to-65kJ/mol).TheATPmoleculeiskineticallystableatpH7andenzymecatalysisisneededforitshydrolysis.ATPactuallyexistsasasumofvariousspeciesincells(e.g.,ATP4-andMgATP2-).FritzLipmann(1899-1986)
Fig.2.Thetwo-dimensionalstickmodeloftheadenosinephosphatefamilyofmolecules,showingtheatomandbondarrangement.Thecommerceofthecell,metabolism,usesATPasthecommonenergycurrency.GTP,CTP,UTPhassimilarbondingwhytheywerenotchosenbynature?Thehumanbodyonaveragecontainsonly250gramsofATPbutturnsoveritsownbodyweightequivalentinATPeachday!ATPprovidesenergyusuallythroughgrouptransfer(proteincouldalsobesuchacceptors)GlnsynthetaseK’eq=10-
G'o/1.36
Thereactionisthusacceleratedbyabout105fold!ATPmightbeconsideredasa“coenzyme”inthissense.Conceptofcoupledreactionsformulated(1900)
WilhelmOstwald,(1900)Z.Physik.Chem.34:248Thefreeenergyreleasedbyanexergonicprocesscanbeusedtodriveanendergonicprocessthatwouldnotgobyitself.“Wasteno(free)energy;useitwell".NucleophilicattacksNotphosphateATPusuallyprovidesenergybygrouptransferofphosphorylgroups(磷?;?-PO32-),notphosphategroups(-OPO32-),
formingcovalentintermediates,notbysimplehydrolysis.Forenergytobesupplied,thetwoprocesseshavetobecoupled!ATPsuppliesenergyforallkindsofcellularprocessesATPhasanintermediatephosphorylgrouptransferpotential,thusADPcanacceptandATPcandonatephosphorylgroups(formingtheATP-ADPcycleandactingasanenergycurrency)WhydoesATPhaveahighphosphoryltransferpotential?G0’dependsonthedifferenceinfreeenergiesofproductsandreactants,therefore,bothmustbeconsidered
;Thereisnosuchthingas“highenergybond”.Fourfactorsareimportant:1.Reliefofchargerepulsion;2.Resonancestabilization;3.Ionization;4.Stabilizationduetohydration.ATPisnotalong-termstorageformoffreeenergyinlivingcells,butphosphocreatineisonesuchphosphorylreservoir,orso-calledphosphagen(alsoinorganicpolyphosphate).Biologicalenergywasfoundtobeproducedviaoxidation-reductionreactions(i.e.,electrontransferring)
MetabolicfuelsCO22e-
2e-2e-2e-H2OO2ATPFreeenergyOxidationMetabolicfuelsareoxidizedtoCO2,withelectronstransferredfirsttouniversalcarriers(e.g.,NAD+andFAD),andeventuallytoO2.EnergyisreleasedduringsuchredoxreactionsandeventuallyconservedinATP.(NADH,FADH2)TransmembraneProtongradientFunctionalgroupsinorganiccompoundspresentinoneoffourgeneraloxidationstates,equivalenttoalkane,alcohol,ketone,orcarboxylicacid
Inaerobicorganisms,theultimateelectronacceptorintheoxidationofcarbonisO2,andtheoxidationproductisCO2Nicotinamideadeninedinucleotide(NAD+)wasfoundtobeacommoncofactorforhydrogen-transferringenzymes(1906)
Harden&Young(1906)."TheAlcoholicFermentofYeast-Juice".Proc.Roy.Soc.78:369–375.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45211.7-2025小麥抗病蟲(chóng)性評(píng)價(jià)技術(shù)規(guī)程第7部分:蚜蟲(chóng)
- 聯(lián)合體施工合同協(xié)議書(shū)
- 行政單位租車(chē)協(xié)議
- 出資轉(zhuǎn)讓協(xié)議經(jīng)典
- 股份合作細(xì)節(jié)文書(shū)與權(quán)益分配方案
- 鋼材購(gòu)銷(xiāo)合同格式
- 年度工作總結(jié)報(bào)告及未來(lái)規(guī)劃
- 物流企業(yè)信息化升級(jí)改造服務(wù)協(xié)議
- 文化藝術(shù)品展覽銷(xiāo)售協(xié)議
- 江蘇省房屋買(mǎi)賣(mài)合同
- 2025年業(yè)務(wù)員工作總結(jié)及工作計(jì)劃模版(3篇)
- 2024年連云港市贛榆區(qū)區(qū)屬?lài)?guó)企對(duì)外招聘筆試真題
- 海南省??谑?024-2025學(xué)年八年級(jí)上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- 2025年注射用賴(lài)氮匹林項(xiàng)目可行性研究報(bào)告
- 2025江西吉安市新廬陵投資發(fā)展限公司招聘11人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 17J008擋土墻(重力式、衡重式、懸臂式)圖示圖集
- 2025年山東出版集團(tuán)招聘筆試參考題庫(kù)含答案解析
- 自動(dòng)化生產(chǎn)線運(yùn)行與維護(hù)完整版課件(全)
- 食品經(jīng)營(yíng)操作流程圖
- 小學(xué)生必背古詩(shī)詞80首硬筆書(shū)法字帖
- 中風(fēng)(腦梗死恢復(fù)期)中醫(yī)護(hù)理方案(課堂PPT)
評(píng)論
0/150
提交評(píng)論