湖南省長(zhǎng)沙市天心區(qū)部分校2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第1頁(yè)
湖南省長(zhǎng)沙市天心區(qū)部分校2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第2頁(yè)
湖南省長(zhǎng)沙市天心區(qū)部分校2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第3頁(yè)
湖南省長(zhǎng)沙市天心區(qū)部分校2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第4頁(yè)
湖南省長(zhǎng)沙市天心區(qū)部分校2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖南省長(zhǎng)沙市天心區(qū)部分校2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(共10小題,每小題3分,共30分)1.“a是實(shí)數(shù),|a|≥0”這一事件是()A.必然事件 B.不確定事件 C.不可能事件 D.隨機(jī)事件2.如圖,AB∥CD,F(xiàn)E⊥DB,垂足為E,∠1=60°,則∠2的度數(shù)是()A.60° B.50° C.40° D.30°3.如圖是由5個(gè)大小相同的正方體組成的幾何體,則該幾何體的主視圖是()A. B. C. D.4.如圖,在平面直角坐標(biāo)系中,直線y=k1x+2(k1≠0)與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)y=在第二象限內(nèi)的圖象交于點(diǎn)C,連接OC,若S△OBC=1,tan∠BOC=,則k2的值是()A.3 B.﹣ C.﹣3 D.﹣65.如圖中任意畫(huà)一個(gè)點(diǎn),落在黑色區(qū)域的概率是()A. B. C.π D.506.如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(-2,0)、(0,1),⊙C的圓心坐標(biāo)為(0,-1),半徑為1.若D是⊙C上的一個(gè)動(dòng)點(diǎn),射線AD與y軸交于點(diǎn)E,則△ABE面積的最大值是A.3 B. C. D.47.已知一個(gè)正n邊形的每個(gè)內(nèi)角為120°,則這個(gè)多邊形的對(duì)角線有()A.5條 B.6條 C.8條 D.9條8.已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對(duì)的圓周角的度數(shù)是()A.30° B.60° C.30°或150° D.60°或120°9.據(jù)國(guó)土資源部數(shù)據(jù)顯示,我國(guó)是全球“可燃冰”資源儲(chǔ)量最多的國(guó)家之一,海、陸總儲(chǔ)量約為39000000000噸油當(dāng)量,將39000000000用科學(xué)記數(shù)法表示為()A.3.9×1010 B.3.9×109 C.0.39×1011 D.39×10910.的相反數(shù)是()A. B.2 C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,AB∥CD,點(diǎn)E是CD上一點(diǎn),∠AEC=40°,EF平分∠AED交AB于點(diǎn)F,則∠AFE=___度.12.如果正比例函數(shù)y=(k-2)x的函數(shù)值y隨x的增大而減小,且它的圖象與反比例函數(shù)y=的圖象沒(méi)有公共點(diǎn),那么k的取值范圍是______.13.將一張長(zhǎng)方形紙片折疊成如圖所示的形狀,若∠DBC=56°,則∠1=_____°.14.關(guān)于x的方程x2-3x+2=0的兩根為x1,x2,則x1+x2+x1x2的值為_(kāi)_____.15.若點(diǎn)M(k﹣1,k+1)關(guān)于y軸的對(duì)稱點(diǎn)在第四象限內(nèi),則一次函數(shù)y=(k﹣1)x+k的圖象不經(jīng)過(guò)第象限.16.如圖,在平行四邊形ABCD中,AB<AD,∠D=30°,CD=4,以AB為直徑的⊙O交BC于點(diǎn)E,則陰影部分的面積為_(kāi)____.三、解答題(共8題,共72分)17.(8分)如圖,矩形中,對(duì)角線、交于點(diǎn),以、為鄰邊作平行四邊形,連接求證:四邊形是菱形若,,求四邊形的面積18.(8分)如圖,四邊形ABCD是平行四邊形,點(diǎn)E在BC上,點(diǎn)F在AD上,BE=DF,求證:AE=CF.19.(8分)如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).(1)求n的值和拋物線的解析式;(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫(xiě)出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).20.(8分)如圖,在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的高(1)△ACD與△ABC相似嗎?為什么?(2)AC2=AB?AD成立嗎?為什么?21.(8分)綜合與實(shí)踐﹣﹣﹣折疊中的數(shù)學(xué)在學(xué)習(xí)完特殊的平行四邊形之后,某學(xué)習(xí)小組針對(duì)矩形中的折疊問(wèn)題進(jìn)行了研究.問(wèn)題背景:在矩形ABCD中,點(diǎn)E、F分別是BC、AD上的動(dòng)點(diǎn),且BE=DF,連接EF,將矩形ABCD沿EF折疊,點(diǎn)C落在點(diǎn)C′處,點(diǎn)D落在點(diǎn)D′處,射線EC′與射線DA相交于點(diǎn)M.猜想與證明:(1)如圖1,當(dāng)EC′與線段AD交于點(diǎn)M時(shí),判斷△MEF的形狀并證明你的結(jié)論;操作與畫(huà)圖:(2)當(dāng)點(diǎn)M與點(diǎn)A重合時(shí),請(qǐng)?jiān)趫D2中作出此時(shí)的折痕EF和折疊后的圖形(要求:尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡,標(biāo)注相應(yīng)的字母);操作與探究:(3)如圖3,當(dāng)點(diǎn)M在線段DA延長(zhǎng)線上時(shí),線段C′D'分別與AD,AB交于P,N兩點(diǎn)時(shí),C′E與AB交于點(diǎn)Q,連接MN并延長(zhǎng)MN交EF于點(diǎn)O.求證:MO⊥EF且MO平分EF;(4)若AB=4,AD=4,在點(diǎn)E由點(diǎn)B運(yùn)動(dòng)到點(diǎn)C的過(guò)程中,點(diǎn)D'所經(jīng)過(guò)的路徑的長(zhǎng)為.22.(10分)如圖,已知二次函數(shù)與x軸交于A、B兩點(diǎn),A在B左側(cè),點(diǎn)C是點(diǎn)A下方,且AC⊥x軸.(1)已知A(-3,0),B(-1,0),AC=OA.①求拋物線解析式和直線OC的解析式;②點(diǎn)P從O出發(fā),以每秒2個(gè)單位的速度沿x軸負(fù)半軸方向運(yùn)動(dòng),Q從O出發(fā),以每秒個(gè)單位的速度沿OC方向運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t.直線PQ與拋物線的一個(gè)交點(diǎn)記為M,當(dāng)2PM=QM時(shí),求t的值(直接寫(xiě)出結(jié)果,不需要寫(xiě)過(guò)程)(2)過(guò)C作直線EF與拋物線交于E、F兩點(diǎn)(E、F在x軸下方),過(guò)E作EG⊥x軸于G,連CG,BF,求證:CG∥BF23.(12分)某數(shù)學(xué)社團(tuán)成員想利用所學(xué)的知識(shí)測(cè)量某廣告牌的寬度(圖中線段MN的長(zhǎng)),直線MN垂直于地面,垂足為點(diǎn)P.在地面A處測(cè)得點(diǎn)M的仰角為58°、點(diǎn)N的仰角為45°,在B處測(cè)得點(diǎn)M的仰角為31°,AB=5米,且A、B、P三點(diǎn)在一直線上.請(qǐng)根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長(zhǎng).(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)24.如圖,要在木里縣某林場(chǎng)東西方向的兩地之間修一條公路MN,已知C點(diǎn)周?chē)?00米范圍內(nèi)為原始森林保護(hù)區(qū),在MN上的點(diǎn)A處測(cè)得C在A的北偏東45°方向上,從A向東走600米到達(dá)B處,測(cè)得C在點(diǎn)B的北偏西60°方向上.(1)MN是否穿過(guò)原始森林保護(hù)區(qū),為什么?(參考數(shù)據(jù):≈1.732)(2)若修路工程順利進(jìn)行,要使修路工程比原計(jì)劃提前5天完成,需將原定的工作效率提高25%,則原計(jì)劃完成這項(xiàng)工程需要多少天?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】根據(jù)數(shù)軸上某個(gè)數(shù)與原點(diǎn)的距離叫做這個(gè)數(shù)的絕對(duì)值的定義,由a是實(shí)數(shù),得|a|≥0恒成立,因此,這一事件是必然事件.故選A.2、D【解題分析】

由EF⊥BD,∠1=60°,結(jié)合三角形內(nèi)角和為180°即可求出∠D的度數(shù),再由“兩直線平行,同位角相等”即可得出結(jié)論.【題目詳解】解:在△DEF中,∠1=60°,∠DEF=90°,

∴∠D=180°-∠DEF-∠1=30°.

∵AB∥CD,

∴∠2=∠D=30°.

故選D.【題目點(diǎn)撥】本題考查平行線的性質(zhì)以及三角形內(nèi)角和為180°,解題關(guān)鍵是根據(jù)平行線的性質(zhì),找出相等、互余或互補(bǔ)的角.3、A【解題分析】試題分析:觀察圖形可知,該幾何體的主視圖是.故選A.考點(diǎn):簡(jiǎn)單組合體的三視圖.4、C【解題分析】

如圖,作CH⊥y軸于H.通過(guò)解直角三角形求出點(diǎn)C坐標(biāo)即可解決問(wèn)題.【題目詳解】解:如圖,作CH⊥y軸于H.由題意B(0,2),∵∴CH=1,∵tan∠BOC=∴OH=3,∴C(﹣1,3),把點(diǎn)C(﹣1,3)代入,得到k2=﹣3,故選C.【題目點(diǎn)撥】本題考查反比例函數(shù)于一次函數(shù)的交點(diǎn)問(wèn)題,銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問(wèn)題,屬于中考常考題型.5、B【解題分析】

抓住黑白面積相等,根據(jù)概率公式可求出概率.【題目詳解】因?yàn)?,黑白區(qū)域面積相等,所以,點(diǎn)落在黑色區(qū)域的概率是.故選B【題目點(diǎn)撥】本題考核知識(shí)點(diǎn):幾何概率.解題關(guān)鍵點(diǎn):分清黑白區(qū)域面積關(guān)系.6、B【解題分析】試題分析:解:當(dāng)射線AD與⊙C相切時(shí),△ABE面積的最大.連接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,連接CD,設(shè)EF=x,∴DE2=EF?OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故選B.考點(diǎn):1.切線的性質(zhì);2.三角形的面積.7、D【解題分析】

多邊形的每一個(gè)內(nèi)角都等于120°,則每個(gè)外角是60°,而任何多邊形的外角是360°,則求得多邊形的邊數(shù);再根據(jù)多邊形一個(gè)頂點(diǎn)出發(fā)的對(duì)角線=n﹣3,即可求得對(duì)角線的條數(shù).【題目詳解】解:∵多邊形的每一個(gè)內(nèi)角都等于120°,∴每個(gè)外角是60度,則多邊形的邊數(shù)為360°÷60°=6,則該多邊形有6個(gè)頂點(diǎn),則此多邊形從一個(gè)頂點(diǎn)出發(fā)的對(duì)角線共有6﹣3=3條.∴這個(gè)多邊形的對(duì)角線有(6×3)=9條,故選:D.【題目點(diǎn)撥】本題主要考查多邊形內(nèi)角和與外角和及多邊形對(duì)角線,掌握求多邊形邊數(shù)的方法是解本題的關(guān)鍵.8、D【解題分析】【分析】由圖可知,OA=10,OD=1.根據(jù)特殊角的三角函數(shù)值求出∠AOB的度數(shù),再根據(jù)圓周定理求出∠C的度數(shù),再根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠E的度數(shù)即可.【題目詳解】由圖可知,OA=10,OD=1,在Rt△OAD中,∵OA=10,OD=1,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°,即弦AB所對(duì)的圓周角的度數(shù)是60°或120°,故選D.【題目點(diǎn)撥】本題考查了圓周角定理、圓內(nèi)接四邊形的對(duì)角互補(bǔ)、解直角三角形的應(yīng)用等,正確畫(huà)出圖形,熟練應(yīng)用相關(guān)知識(shí)是解題的關(guān)鍵.9、A【解題分析】

用科學(xué)記數(shù)法表示較大的數(shù)時(shí),一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【題目詳解】39000000000=3.9×1.故選A.【題目點(diǎn)撥】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).10、B【解題分析】

根據(jù)相反數(shù)的性質(zhì)可得結(jié)果.【題目詳解】因?yàn)?2+2=0,所以﹣2的相反數(shù)是2,故選B.【題目點(diǎn)撥】本題考查求相反數(shù),熟記相反數(shù)的性質(zhì)是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、70°.【解題分析】

由平角求出∠AED的度數(shù),由角平分線得出∠DEF的度數(shù),再由平行線的性質(zhì)即可求出∠AFE的度數(shù).【題目詳解】∵∠AEC=40°,∴∠AED=180°﹣∠AEC=140°,∵EF平分∠AED,∴,又∵AB∥CD,∴∠AFE=∠DEF=70°.故答案為:70【題目點(diǎn)撥】本題考查的是平行線的性質(zhì)以及角平分線的定義.熟練掌握平行線的性質(zhì),求出∠DEF的度數(shù)是解決問(wèn)題的關(guān)鍵.12、【解題分析】

先根據(jù)正比例函數(shù)y=(k-1)x的函數(shù)值y隨x的增大而減小,可知k-1<0;再根據(jù)它的圖象與反比例函數(shù)y=的圖象沒(méi)有公共點(diǎn),說(shuō)明反比例函數(shù)y=的圖象經(jīng)過(guò)一、三象限,k>0,從而可以求出k的取值范圍.【題目詳解】∵y=(k-1)x的函數(shù)值y隨x的增大而減小,

∴k-1<0

∴k<1

而y=(k-1)x的圖象與反比例函數(shù)y=的圖象沒(méi)有公共點(diǎn),

∴k>0

綜合以上可知:0<k<1.

故答案為0<k<1.【題目點(diǎn)撥】本題考查的是一次函數(shù)與反比例函數(shù)的相關(guān)性質(zhì),清楚掌握函數(shù)中的k的意義是解決本題的關(guān)鍵.13、62【解題分析】

根據(jù)折疊的性質(zhì)得出∠2=∠ABD,利用平角的定義解答即可.【題目詳解】解:如圖所示:由折疊可得:∠2=∠ABD,∵∠DBC=56°,∴∠2+∠ABD+56°=180°,解得:∠2=62°,∵AE//BC,∴∠1=∠2=62°,故答案為62.【題目點(diǎn)撥】本題考查了折疊變換的知識(shí)以及平行線的性質(zhì)的運(yùn)用,根據(jù)折疊的性質(zhì)得出∠2=∠ABD是關(guān)鍵.14、5【解題分析】試題分析:利用根與系數(shù)的關(guān)系進(jìn)行求解即可.解:∵x1,x2是方程x2-3x+2=0的兩根,∴x1+x2=,x1x2=,∴x1+x2+x1x2=3+2=5.故答案為:5.15、一【解題分析】試題分析:首先確定點(diǎn)M所處的象限,然后確定k的符號(hào),從而確定一次函數(shù)所經(jīng)過(guò)的象限,得到答案.∵點(diǎn)M(k﹣1,k+1)關(guān)于y軸的對(duì)稱點(diǎn)在第四象限內(nèi),∴點(diǎn)M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k經(jīng)過(guò)第二、三、四象限,不經(jīng)過(guò)第一象限考點(diǎn):一次函數(shù)的性質(zhì)16、【解題分析】【分析】連接半徑和弦AE,根據(jù)直徑所對(duì)的圓周角是直角得:∠AEB=90°,繼而可得AE和BE的長(zhǎng),所以圖中弓形的面積為扇形OBE的面積與△OBE面積的差,因?yàn)镺A=OB,所以△OBE的面積是△ABE面積的一半,可得結(jié)論.【題目詳解】如圖,連接OE、AE,∵AB是⊙O的直徑,∴∠AEB=90°,∵四邊形ABCD是平行四邊形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S陰影=S扇形OBE﹣S△BOE==,故答案為.【題目點(diǎn)撥】本題考查了扇形的面積計(jì)算、平行四邊形的性質(zhì),含30度角的直角三角形的性質(zhì)等,求出扇形OBE的面積和△ABE的面積是解本題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)見(jiàn)解析;(2)S四邊形ADOE=.【解題分析】

(1)根據(jù)矩形的性質(zhì)有OA=OB=OC=OD,根據(jù)四邊形ADOE是平行四邊形,得到OD∥AE,AE=OD.等量代換得到AE=OB.即可證明四邊形AOBE為平行四邊形.根據(jù)有一組鄰邊相等的平行四邊形是菱形即可證明.(2)根據(jù)菱形的性質(zhì)有∠EAB=∠BAO.根據(jù)矩形的性質(zhì)有AB∥CD,根據(jù)平行線的性質(zhì)有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根據(jù)面積公式SΔADC,即可求解.【題目詳解】(1)證明:∵矩形ABCD,∴OA=OB=OC=OD.∵平行四邊形ADOE,∴OD∥AE,AE=OD.∴AE=OB.∴四邊形AOBE為平行四邊形.∵OA=OB,∴四邊形AOBE為菱形.(2)解:∵菱形AOBE,∴∠EAB=∠BAO.∵矩形ABCD,∴AB∥CD.∴∠BAC=∠ACD,∠ADC=90°.∴∠EAB=∠BAO=∠DCA.∵∠EAO+∠DCO=180°,∴∠DCA=60°.∵DC=2,∴AD=.∴SΔADC=.∴S四邊形ADOE=.【題目點(diǎn)撥】考查平行四邊形的判定與性質(zhì),矩形的性質(zhì),菱形的判定與性質(zhì),解直角三角形,綜合性比較強(qiáng).18、見(jiàn)解析【解題分析】

根據(jù)平行四邊形性質(zhì)得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根據(jù)平行四邊形的判定推出四邊形AECF是平行四邊形,即可得出結(jié)論.【題目詳解】證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四邊形AECF是平行四邊形,∴AE=CF.【題目點(diǎn)撥】本題考查了平行四邊形的性質(zhì)和判定的應(yīng)用,注意:平行四邊形的對(duì)邊平行且相等,有一組對(duì)邊平行且相等的四邊形是平行四邊形.19、(1)n=2;y=x2﹣x﹣1;(2)p=;當(dāng)t=2時(shí),p有最大值;(3)6個(gè),或;【解題分析】

(1)把點(diǎn)B的坐標(biāo)代入直線解析式求出m的值,再把點(diǎn)C的坐標(biāo)代入直線求解即可得到n的值,然后利用待定系數(shù)法求二次函數(shù)解析式解答;

(2)令y=0求出點(diǎn)A的坐標(biāo),從而得到OA、OB的長(zhǎng)度,利用勾股定理列式求出AB的長(zhǎng),然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根據(jù)矩形的周長(zhǎng)公式表示出p,利用直線和拋物線的解析式表示DE的長(zhǎng),整理即可得到P與t的關(guān)系式,再利用二次函數(shù)的最值問(wèn)題解答;

(3)根據(jù)逆時(shí)針旋轉(zhuǎn)角為90°可得A1O1∥y軸時(shí),B1O1∥x軸,旋轉(zhuǎn)角是180°判斷出A1O1∥x軸時(shí),B1A1∥AB,根據(jù)圖3、圖4兩種情形即可解決.【題目詳解】解:(1)∵直線l:y=x+m經(jīng)過(guò)點(diǎn)B(0,﹣1),∴m=﹣1,∴直線l的解析式為y=x﹣1,∵直線l:y=x﹣1經(jīng)過(guò)點(diǎn)C(4,n),∴n=×4﹣1=2,∵拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)C(4,2)和點(diǎn)B(0,﹣1),∴,解得,∴拋物線的解析式為y=x2﹣x﹣1;(2)令y=0,則x﹣1=0,解得x=,∴點(diǎn)A的坐標(biāo)為(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y軸,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE?cos∠DEF=DE?=DE,DF=DE?sin∠DEF=DE?=DE,∴p=2(DF+EF)=2(+)DE=DE,∵點(diǎn)D的橫坐標(biāo)為t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴當(dāng)t=2時(shí),p有最大值.(3)“落點(diǎn)”的個(gè)數(shù)有6個(gè),如圖1,圖2中各有2個(gè),圖3,圖4各有一個(gè)所示.如圖3中,設(shè)A1的橫坐標(biāo)為m,則O1的橫坐標(biāo)為m+,∴m2﹣m﹣1=(m+)2﹣(m+)﹣1,解得m=,如圖4中,設(shè)A1的橫坐標(biāo)為m,則B1的橫坐標(biāo)為m+,B1的縱坐標(biāo)比例A1的縱坐標(biāo)大1,∴m2﹣m﹣1+1=(m+)2﹣(m+)﹣1,解得m=,∴旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo)為或【題目點(diǎn)撥】本題是二次函數(shù)綜合題型,主要考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,待定系數(shù)法求二次函數(shù)解析式,銳角三角函數(shù),長(zhǎng)方形的周長(zhǎng)公式,以及二次函數(shù)的最值問(wèn)題,本題難點(diǎn)在于(3)根據(jù)旋轉(zhuǎn)角是90°判斷出A1O1∥y軸時(shí),B1O1∥x軸,旋轉(zhuǎn)角是180°判斷出A1O1∥x軸時(shí),B1A1∥AB,解題時(shí)注意要分情況討論.20、(1)△ACD與△ABC相似;(2)AC2=AB?AD成立.【解題分析】

(1)求出∠ADC=∠ACB=90°,根據(jù)相似三角形的判定推出即可;(2)根據(jù)相似三角形的性質(zhì)得出比例式,再進(jìn)行變形即可.【題目詳解】解:(1)△ACD與△ABC相似,理由是:∵在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的高,∴∠ADC=∠ACB=90°,∵∠A=∠A,∴△ACD∽∠ABC;(2)AC2=AB?AD成立,理由是:∵△ACD∽∠ABC,∴=,∴AC2=AB?AD.【題目點(diǎn)撥】本題考查了相似三角形的性質(zhì)和判定,能根據(jù)相似三角形的判定定理推出△ACD∽△ABC是解此題的關(guān)鍵.21、(1)△MEF是等腰三角形(2)見(jiàn)解析(3)證明見(jiàn)解析(4)【解題分析】

(1)由AD∥BC,可得∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,依據(jù)∠MFE=∠MEF,即可得到ME=MF,進(jìn)而得出△MEF是等腰三角形;(2)作AC的垂直平分線,即可得到折痕EF,依據(jù)軸對(duì)稱的性質(zhì),即可得到D'的位置;(3)依據(jù)△BEQ≌△D'FP,可得PF=QE,依據(jù)△NC'P≌△NAP,可得AN=C'N,依據(jù)Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,進(jìn)而得到△MEF是等腰三角形,依據(jù)三線合一,即可得到MO⊥EF且MO平分EF;(4)依據(jù)點(diǎn)D'所經(jīng)過(guò)的路徑是以O(shè)為圓心,4為半徑,圓心角為240°的扇形的弧,即可得到點(diǎn)D'所經(jīng)過(guò)的路徑的長(zhǎng).【題目詳解】(1)△MEF是等腰三角形.理由:∵四邊形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折疊后的圖形如圖所示:(3)如圖,∵FD=BE,由折疊可得,D'F=DF,∴BE=D'F,在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN,∵∠C'QN=∠BQE,∠APN=∠D'PF,∴∠BQE=∠D'PF,在△BEQ和△D'FP中,,∴△BEQ≌△D'FP(AAS),∴PF=QE,∵四邊形ABCD是矩形,∴AD=BC,∴AD﹣FD=BC﹣BE,∴AF=CE,由折疊可得,C'E=EC,∴AF=C'E,∴AP=C'Q,在△NC'Q和△NAP中,,∴△NC'P≌△NAP(AAS),∴AN=C'N,在Rt△MC'N和Rt△MAN中,,∴Rt△MC'N≌Rt△MAN(HL),∴∠AMN=∠C'MN,由折疊可得,∠C'EF=∠CEF,∵四邊形ABCD是矩形,∴AD∥BC,∴∠AFE=∠FEC,∴∠C'EF=∠AFE,∴ME=MF,∴△MEF是等腰三角形,∴MO⊥EF且MO平分EF;(4)在點(diǎn)E由點(diǎn)B運(yùn)動(dòng)到點(diǎn)C的過(guò)程中,點(diǎn)D'所經(jīng)過(guò)的路徑是以O(shè)為圓心,4為半徑,圓心角為240°的扇形的弧,如圖:故其長(zhǎng)為L(zhǎng)=.故答案為.【題目點(diǎn)撥】此題是四邊形綜合題,主要考查了折疊問(wèn)題與菱形的判定與性質(zhì)、弧長(zhǎng)計(jì)算公式,等腰三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì)的綜合應(yīng)用,熟練掌握等腰三角形的判定定理和性質(zhì)定理是解本題的關(guān)鍵.22、(1)①y=-x2-4x-3;y=x;②t=或;(2)證明見(jiàn)解析.【解題分析】

(1)把A(-3,0),B(-1,0)代入二次函數(shù)解析式即可求出;由AC=OA知C點(diǎn)坐標(biāo)為(-3,-3),故可求出直線OC的解析式;②由題意得OP=2t,P(-2t,0),過(guò)Q作QH⊥x軸于H,得OH=HQ=t,可得Q(-t,-t),直線PQ為y=-x-2t,過(guò)M作MG⊥x軸于G,由,則2PG=GH,由,得,于是,解得,從而求出M(-3t,t)或M(),再分情況計(jì)算即可;(2)過(guò)F作FH⊥x軸于H,想辦法證得tan∠CAG=tan∠FBH,即∠CAG=∠FBH,即得證.【題目詳解】解:(1)①把A(-3,0),B(-1,0)代入二次函數(shù)解析式得解得∴y=-x2-4x

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論