2024屆江蘇省無錫市江陰市重點中學(xué)中考數(shù)學(xué)四模試卷含解析_第1頁
2024屆江蘇省無錫市江陰市重點中學(xué)中考數(shù)學(xué)四模試卷含解析_第2頁
2024屆江蘇省無錫市江陰市重點中學(xué)中考數(shù)學(xué)四模試卷含解析_第3頁
2024屆江蘇省無錫市江陰市重點中學(xué)中考數(shù)學(xué)四模試卷含解析_第4頁
2024屆江蘇省無錫市江陰市重點中學(xué)中考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆江蘇省無錫市江陰市重點中學(xué)中考數(shù)學(xué)四模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖1,在等邊△ABC中,D是BC的中點,P為AB邊上的一個動點,設(shè)AP=x,圖1中線段DP的長為y,若表示y與x的函數(shù)關(guān)系的圖象如圖2所示,則△ABC的面積為()A.4 B. C.12 D.2.如圖,等腰△ABC的底邊BC與底邊上的高AD相等,高AD在數(shù)軸上,其中點A,D分別對應(yīng)數(shù)軸上的實數(shù)﹣2,2,則AC的長度為()A.2 B.4 C.2 D.43.直線y=x+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)4.如圖,一個幾何體由5個大小相同、棱長為1的正方體搭成,則這個幾何體的左視圖的面積為()A.5 B.4 C.3 D.25.cos30°的值為(

)A.1

B.

C.

D.6.如圖,已知?ABCD中,E是邊AD的中點,BE交對角線AC于點F,那么S△AFE:S四邊形FCDE為()A.1:3 B.1:4 C.1:5 D.1:67.將一把直尺與一塊直角三角板如圖放置,如果,那么的度數(shù)為().A. B. C. D.8.已知a+b=4,c﹣d=﹣3,則(b+c)﹣(d﹣a)的值為()A.7 B.﹣7 C.1 D.﹣19.一元二次方程x2﹣8x﹣2=0,配方的結(jié)果是()A.(x+4)2=18 B.(x+4)2=14 C.(x﹣4)2=18 D.(x﹣4)2=1410.如圖,一束平行太陽光線FA、GB照射到正五邊形ABCDE上,∠ABG=46°,則∠FAE的度數(shù)是()A.26°. B.44°. C.46°. D.72°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在⊙O中,直徑AB⊥弦CD,∠A=28°,則∠D=_______.12.將直尺和直角三角尺按如圖方式擺放.若,,則________.13.某校為了解學(xué)生最喜歡的球類運動情況,隨機選取該校部分學(xué)生進行調(diào)查,要求每名學(xué)生只寫一類最喜歡的球類運動,以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分那么,其中最喜歡足球的學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為____________%14.若實數(shù)a、b在數(shù)軸上的位置如圖所示,則代數(shù)式|b﹣a|+化簡為_____.15.的相反數(shù)是______,的倒數(shù)是______.16.如圖,C為半圓內(nèi)一點,O為圓心,直徑AB長為1cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時針旋轉(zhuǎn)至△B′OC′,點C′在OA上,則邊BC掃過區(qū)域(圖中陰影部分)的面積為_________cm1.三、解答題(共8題,共72分)17.(8分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B,與y軸交于C(0,3),直線y=+m經(jīng)過點C,與拋物線的另一交點為點D,點P是直線CD上方拋物線上的一個動點,過點P作PF⊥x軸于點F,交直線CD于點E,設(shè)點P的橫坐標為m.(1)求拋物線解析式并求出點D的坐標;(2)連接PD,△CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;(3)當△CPE是等腰三角形時,請直接寫出m的值.18.(8分)某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.(1)這次調(diào)查的市民人數(shù)為________人,m=________,n=________;(2)補全條形統(tǒng)計圖;(3)若該市約有市民100000人,請你根據(jù)抽樣調(diào)查的結(jié)果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.19.(8分)關(guān)于x的一元二次方程ax2+bx+1=1.當b=a+2時,利用根的判別式判斷方程根的情況;若方程有兩個相等的實數(shù)根,寫出一組滿足條件的a,b的值,并求此時方程的根.20.(8分)某初中學(xué)校舉行毛筆書法大賽,對各年級同學(xué)的獲獎情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中相關(guān)數(shù)據(jù)解答下列問題:請將條形統(tǒng)計圖補全;獲得一等獎的同學(xué)中有來自七年級,有來自八年級,其他同學(xué)均來自九年級,現(xiàn)準備從獲得一等獎的同學(xué)中任選兩人參加市內(nèi)毛筆書法大賽,請通過列表或畫樹狀圖求所選出的兩人中既有七年級又有九年級同學(xué)的概率.21.(8分)如圖,在平面直角坐標系中,一次函數(shù)的圖象分別交x軸、y軸于A、B兩點,與反比例函數(shù)的圖象交于C、D兩點.已知點C的坐標是(6,-1),D(n,3).求m的值和點D的坐標.求的值.根據(jù)圖象直接寫出:當x為何值時,一次函數(shù)的值大于反比例函數(shù)的值?22.(10分)“C919”大型客機首飛成功,激發(fā)了同學(xué)們對航空科技的興趣,如圖是某校航模興趣小組獲得的一張數(shù)據(jù)不完整的航模飛機機翼圖紙,圖中AB∥CD,AM∥BN∥ED,AE⊥DE,請根據(jù)圖中數(shù)據(jù),求出線段BE和CD的長.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結(jié)果保留小數(shù)點后一位)23.(12分)如圖,AB是⊙O的直徑,BC交⊙O于點D,E是弧的中點,AE與BC交于點F,∠C=2∠EAB.求證:AC是⊙O的切線;已知CD=4,CA=6,求AF的長.24.先化簡,再求值:(﹣m+1)÷,其中m的值從﹣1,0,2中選?。?/p>

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】分析:由圖1、圖2結(jié)合題意可知,當DP⊥AB時,DP最短,由此可得DP最短=y最小=,這樣如圖3,過點P作PD⊥AB于點P,連接AD,結(jié)合△ABC是等邊三角形和點D是BC邊的中點進行分析解答即可.詳解:由題意可知:當DP⊥AB時,DP最短,由此可得DP最短=y最小=,如圖3,過點P作PD⊥AB于點P,連接AD,∵△ABC是等邊三角形,點D是BC邊上的中點,∴∠ABC=60°,AD⊥BC,∵DP⊥AB于點P,此時DP=,∴BD=,∴BC=2BD=4,∴AB=4,∴AD=AB·sin∠B=4×sin60°=,∴S△ABC=AD·BC=.故選D.點睛:“讀懂題意,知道當DP⊥AB于點P時,DP最短=”是解答本題的關(guān)鍵.2、C【解題分析】

根據(jù)等腰三角形的性質(zhì)和勾股定理解答即可.【題目詳解】解:∵點A,D分別對應(yīng)數(shù)軸上的實數(shù)﹣2,2,∴AD=4,∵等腰△ABC的底邊BC與底邊上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故選:C.【題目點撥】此題考查等腰三角形的性質(zhì),注意等腰三角形的三線合一,熟練運用勾股定理.3、C【解題分析】

作點D關(guān)于x軸的對稱點D′,連接CD′交x軸于點P,此時PC+PD值最小,如圖所示.直線y=x+4與x軸、y軸的交點坐標為A(﹣6,0)和點B(0,4),因點C、D分別為線段AB、OB的中點,可得點C(﹣3,1),點D(0,1).再由點D′和點D關(guān)于x軸對稱,可知點D′的坐標為(0,﹣1).設(shè)直線CD′的解析式為y=kx+b,直線CD′過點C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直線CD′的解析式為y=﹣x﹣1.令y=﹣x﹣1中y=0,則0=﹣x﹣1,解得:x=﹣,所以點P的坐標為(﹣,0).故答案選C.考點:一次函數(shù)圖象上點的坐標特征;軸對稱-最短路線問題.4、C【解題分析】

根據(jù)左視圖是從左面看到的圖形求解即可.【題目詳解】從左面看,可以看到3個正方形,面積為3,故選:C.【題目點撥】本題考查三視圖的知識,解決此類圖的關(guān)鍵是由三視圖得到相應(yīng)的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖.5、D【解題分析】cos30°=.故選D.6、C【解題分析】

根據(jù)AE∥BC,E為AD中點,找到AF與FC的比,則可知△AEF面積與△FCE面積的比,同時因為△DEC面積=△AEC面積,則可知四邊形FCDE面積與△AEF面積之間的關(guān)系.【題目詳解】解:連接CE,∵AE∥BC,E為AD中點,

∴.

∴△FEC面積是△AEF面積的2倍.

設(shè)△AEF面積為x,則△AEC面積為3x,

∵E為AD中點,

∴△DEC面積=△AEC面積=3x.

∴四邊形FCDE面積為1x,

所以S△AFE:S四邊形FCDE為1:1.

故選:C.【題目點撥】本題考查相似三角形的判定和性質(zhì)、平行四邊形的性質(zhì),解題關(guān)鍵是通過線段的比得到三角形面積的關(guān)系.7、D【解題分析】

根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠1,再根據(jù)兩直線平行,同位角相等可得∠2=∠1.【題目詳解】如圖,由三角形的外角性質(zhì)得:∠1=90°+∠1=90°+58°=148°.∵直尺的兩邊互相平行,∴∠2=∠1=148°.故選D.【題目點撥】本題考查了平行線的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.8、C【解題分析】試題分析:原式去括號可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.故選A.考點:代數(shù)式的求值;整體思想.9、C【解題分析】x2-8x=2,

x2-8x+16=1,

(x-4)2=1.

故選C.【題目點撥】本題考查了解一元二次方程-配方法:將一元二次方程配成(x+m)2=n的形式,再利用直接開平方法求解,這種解一元二次方程的方法叫配方法.10、A【解題分析】

先根據(jù)正五邊形的性質(zhì)求出∠EAB的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.【題目詳解】解:∵圖中是正五邊形.∴∠EAB=108°.∵太陽光線互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故選A.【題目點撥】此題考查平行線的性質(zhì),多邊形內(nèi)角與外角,解題關(guān)鍵在于求出∠EAB.二、填空題(本大題共6個小題,每小題3分,共18分)11、34°【解題分析】分析:首先根據(jù)垂徑定理得出∠BOD的度數(shù),然后根據(jù)三角形內(nèi)角和定理得出∠D的度數(shù).詳解:∵直徑AB⊥弦CD,∴∠BOD=2∠A=56°,∴∠D=90°-56°=34°.點睛:本題主要考查的是圓的垂徑定理,屬于基礎(chǔ)題型.求出∠BOD的度數(shù)是解題的關(guān)鍵.12、80°.【解題分析】

由于直尺外形是矩形,根據(jù)矩形的性質(zhì)可知對邊平行,所以∠4=∠3,再根據(jù)外角的性質(zhì)即可求出結(jié)果.【題目詳解】解:如圖所示,依題意得:∠4=∠3,∵∠4=∠2+∠1=80°∴∠3=80°.故答案為80°.【題目點撥】本題考查了平行線的性質(zhì)和三角形外角的性質(zhì),掌握三角形外角的性質(zhì)是解題的關(guān)鍵.13、1%【解題分析】

依據(jù)最喜歡羽毛球的學(xué)生數(shù)以及占被調(diào)查總?cè)藬?shù)的百分比,即可得到被調(diào)查總?cè)藬?shù),進而得出最喜歡籃球的學(xué)生數(shù)以及最喜歡足球的學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比.【題目詳解】∵被調(diào)查學(xué)生的總數(shù)為10÷20%=50人,

∴最喜歡籃球的有50×32%=16人,

則最喜歡足球的學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比=×100%=1%,

故答案為:1.【題目點撥】本題主要考查扇形統(tǒng)計圖,扇形統(tǒng)計圖是用整個圓表示總數(shù)用圓內(nèi)各個扇形的大小表示各部分數(shù)量占總數(shù)的百分數(shù).通過扇形統(tǒng)計圖可以很清楚地表示出各部分數(shù)量同總數(shù)之間的關(guān)系.14、2a﹣b.【解題分析】

直接利用數(shù)軸上a,b的位置進而得出b﹣a<0,a>0,再化簡得出答案.【題目詳解】解:由數(shù)軸可得:b﹣a<0,a>0,則|b﹣a|+=a﹣b+a=2a﹣b.故答案為2a﹣b.【題目點撥】此題主要考查了二次根式的性質(zhì)與化簡,正確得出各項符號是解題關(guān)鍵.15、2,【解題分析】試題分析:根據(jù)相反數(shù)和倒數(shù)的定義分別進行求解,﹣2的相反數(shù)是2,﹣2的倒數(shù)是.考點:倒數(shù);相反數(shù).16、【解題分析】

根據(jù)直角三角形的性質(zhì)求出OC、BC,根據(jù)扇形面積公式計算即可.【題目詳解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=OB=1則邊BC掃過區(qū)域的面積為:故答案為.【題目點撥】考核知識點:扇形面積計算.熟記公式是關(guān)鍵.三、解答題(共8題,共72分)17、(1)y=﹣x2+2x+3,D點坐標為();(2)當m=時,△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解題分析】

(1)利用待定系數(shù)法求拋物線解析式和直線CD的解析式,然后解方程組得D點坐標;

(2)設(shè)P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數(shù)的性質(zhì)解決問題;

(3)討論:當PC=PE時,m2+(-m2+2m+3-3)2=(-m2+m)2;當CP=CE時,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當EC=EP時,m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.【題目詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線CD的解析式為y=﹣x+3,解方程組,解得或,∴D點坐標為(,);(2)存在.設(shè)P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當m=時,△CDP的面積存在最大值,最大值為;(3)當PC=PE時,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當CP=CE時,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當EC=EP時,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所述,m的值為或或.【題目點撥】本題考核知識點:二次函數(shù)的綜合應(yīng)用.解題關(guān)鍵點:靈活運用二次函數(shù)性質(zhì),運用數(shù)形結(jié)合思想.18、(1)500,12,32;(2)補圖見解析;(3)該市大約有32000人對“社會主義核心價值觀”達到“A.非常了解”的程度.【解題分析】

(1)根據(jù)項目B的人數(shù)以及百分比,即可得到這次調(diào)查的市民人數(shù),據(jù)此可得項目A,C的百分比;(2)根據(jù)對“社會主義核心價值觀”達到“A.非常了解”的人數(shù)為:32%×500=160,補全條形統(tǒng)計圖;(3)根據(jù)全市總?cè)藬?shù)乘以A項目所占百分比,即可得到該市對“社會主義核心價值觀”達到“A非常了解”的程度的人數(shù).【題目詳解】試題分析:試題解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)對“社會主義核心價值觀”達到“A.非常了解”的人數(shù)為:32%×500=160,補全條形統(tǒng)計圖如下:(3)100000×32%=32000(人),答:該市大約有32000人對“社會主義核心價值觀”達到“A.非常了解”的程度.19、(2)方程有兩個不相等的實數(shù)根;(2)b=-2,a=2時,x2=x2=﹣2.【解題分析】

分析:(2)求出根的判別式,判斷其范圍,即可判斷方程根的情況.(2)方程有兩個相等的實數(shù)根,則,寫出一組滿足條件的,的值即可.詳解:(2)解:由題意:.∵,∴原方程有兩個不相等的實數(shù)根.(2)答案不唯一,滿足()即可,例如:解:令,,則原方程為,解得:.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.20、(1)答案見解析;(2).【解題分析】【分析】(1)根據(jù)參與獎有10人,占比25%可求得獲獎的總?cè)藬?shù),用總?cè)藬?shù)減去二等獎、三等獎、鼓勵獎、參與獎的人數(shù)可求得一等獎的人數(shù),據(jù)此補全條形圖即可;(2)根據(jù)題意分別求出七年級、八年級、九年級獲得一等獎的人數(shù),然后通過列表或畫樹狀圖法進行求解即可得.【題目詳解】(1)10÷25%=40(人),獲一等獎人數(shù):40-8-6-12-10=4(人),補全條形圖如圖所示:(2)七年級獲一等獎人數(shù):4×=1(人),八年級獲一等獎人數(shù):4×=1(人),∴九年級獲一等獎人數(shù):4-1-1=2(人),七年級獲一等獎的同學(xué)用M表示,八年級獲一等獎的同學(xué)用N表示,九年級獲一等獎的同學(xué)用P1、P2表示,樹狀圖如下:共有12種等可能結(jié)果,其中獲得一等獎的既有七年級又有九年級人數(shù)的結(jié)果有4種,則所選出的兩人中既有七年級又有九年級同學(xué)的概率P=.【點評】此題考查了統(tǒng)計與概率綜合,理解扇形統(tǒng)計圖與條形統(tǒng)計圖的意義及列表法或樹狀圖法是解題關(guān)鍵.21、(1)m=-6,點D的坐標為(-2,3);(2);(3)當或時,一次函數(shù)的值大于反比例函數(shù)的值.【解題分析】

(1)將點C的坐標(6,-1)代入即可求出m,再把D(n,3)代入反比例函數(shù)解析式求出n即可.(2)根據(jù)C(6,-1)、D(-2,3)得出直線CD的解析式,再求出直線CD與x軸和y軸的交點即可,得出OA、OB的長,再根據(jù)銳角三角函數(shù)的定義即可求得;(3)根據(jù)函數(shù)的圖象和交點坐標即可求得.【題目詳解】⑴把C(6,-1)代入,得.則反比例函數(shù)的解析式為,把代入,得,∴點D的坐標為(-2,3).⑵將C(6,-1)、D(-2,3)代入,得,解得.∴一次函數(shù)的解析式為,∴點B的坐標為(0,2),點A的坐標為(4,0).∴,在在中,∴.⑶根據(jù)函數(shù)圖象可知,當或時,一次函數(shù)的值大于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論