2024屆湖北省武漢市部分學(xué)校中考數(shù)學(xué)模試卷含解析_第1頁
2024屆湖北省武漢市部分學(xué)校中考數(shù)學(xué)模試卷含解析_第2頁
2024屆湖北省武漢市部分學(xué)校中考數(shù)學(xué)模試卷含解析_第3頁
2024屆湖北省武漢市部分學(xué)校中考數(shù)學(xué)模試卷含解析_第4頁
2024屆湖北省武漢市部分學(xué)校中考數(shù)學(xué)模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆湖北省武漢市部分學(xué)校中考數(shù)學(xué)模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.不等式2x﹣1<1的解集在數(shù)軸上表示正確的是()A. B.C. D.2.某圓錐的主視圖是一個邊長為3cm的等邊三角形,那么這個圓錐的側(cè)面積是()A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm23.已知,則的值是A.60 B.64 C.66 D.724.如圖,在Rt△ABC中,∠ACB=90°,CD是AB邊上的中線,AC=8,BC=6,則∠ACD的正切值是()A. B. C. D.5.如圖,在△ABC中,AC的垂直平分線分別交AC、BC于E,D兩點,EC=4,△ABC的周長為23,則△ABD的周長為()A.13 B.15 C.17 D.196.如圖,反比例函數(shù)(x>0)的圖象經(jīng)過矩形OABC對角線的交點M,分別于AB、BC交于點D、E,若四邊形ODBE的面積為9,則k的值為()A.1 B.2 C.3 D.47.函數(shù)在同一直角坐標系內(nèi)的圖象大致是()A. B. C. D.8.如圖,將一塊含有30°角的直角三角板的兩個頂點放在長方形直尺的一組對邊上,如果∠1=30°,那么∠2的度數(shù)為()A.30° B.40° C.50° D.60°9.如圖,⊙O中,弦BC與半徑OA相交于點D,連接AB,OC,若∠A=60°,∠ADC=85°,則∠C的度數(shù)是()A.25° B.27.5° C.30° D.35°10.如圖,等腰△ABC的底邊BC與底邊上的高AD相等,高AD在數(shù)軸上,其中點A,D分別對應(yīng)數(shù)軸上的實數(shù)﹣2,2,則AC的長度為()A.2 B.4 C.2 D.4二、填空題(本大題共6個小題,每小題3分,共18分)11.已知一粒米的質(zhì)量是1.111121千克,這個數(shù)字用科學(xué)記數(shù)法表示為__________.12.計算:|﹣5|﹣=_____.13.用配方法將方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n為常數(shù)),則m+n=_____.14.如圖,已知P是正方形ABCD對角線BD上一點,且BP=BC,則∠ACP度數(shù)是_____度.15.如圖,在2×4的正方形網(wǎng)格中,每個小正方形的邊長均為1,每個小正方形的頂點叫做格點,△ABC的頂點都在格點上,將△ABC繞著點C按順時針方向旋轉(zhuǎn)一定角度后,得到△A'B'C',點A'、B'在格點上,則點A走過的路徑長為_____(結(jié)果保留π)16.有一組數(shù)據(jù):3,a,4,6,7,它們的平均數(shù)是5,則a=_____,這組數(shù)據(jù)的方差是_____.三、解答題(共8題,共72分)17.(8分)班級的課外活動,學(xué)生們都很積極.梁老師在某班對同學(xué)們進行了一次關(guān)于“我喜愛的體育項目”的調(diào)査,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請根據(jù)圖中的信息,解答下列問題:(1)調(diào)查了________名學(xué)生;(2)補全條形統(tǒng)計圖;(3)在扇形統(tǒng)計圖中,“乒乓球”部分所對應(yīng)的圓心角度數(shù)為________;(4)學(xué)校將舉辦運動會,該班將推選5位同學(xué)參加乒乓球比賽,有3位男同學(xué)和2位女同學(xué),現(xiàn)準備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.18.(8分)如圖,AB是⊙O直徑,BC⊥AB于點B,點C是射線BC上任意一點,過點C作CD切⊙O于點D,連接AD.求證:BC=CD;若∠C=60°,BC=3,求AD的長.19.(8分)如圖,在等腰直角△ABC中,∠C是直角,點A在直線MN上,過點C作CE⊥MN于點E,過點B作BF⊥MN于點F.(1)如圖1,當C,B兩點均在直線MN的上方時,①直接寫出線段AE,BF與CE的數(shù)量關(guān)系.②猜測線段AF,BF與CE的數(shù)量關(guān)系,不必寫出證明過程.(2)將等腰直角△ABC繞著點A順時針旋轉(zhuǎn)至圖2位置時,線段AF,BF與CE又有怎樣的數(shù)量關(guān)系,請寫出你的猜想,并寫出證明過程.(3)將等腰直角△ABC繞著點A繼續(xù)旋轉(zhuǎn)至圖3位置時,BF與AC交于點G,若AF=3,BF=7,直接寫出FG的長度.20.(8分)已知:a是﹣2的相反數(shù),b是﹣2的倒數(shù),則(1)a=_____,b=_____;(2)求代數(shù)式a2b+ab的值.21.(8分)先化簡,再求值:x(x+1)﹣(x+1)(x﹣1),其中x=1.22.(10分)2017年5月14日至15日,“一帶一路”國際合作高峰論壇在北京舉行,本屆論壇期間,中國同30多個國家簽署經(jīng)貿(mào)合作協(xié)議,某廠準備生產(chǎn)甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區(qū).已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.(1)甲種商品與乙種商品的銷售單價各多少元?(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?23.(12分)王老師對試卷講評課中九年級學(xué)生參與的深度與廣度進行評價調(diào)查,每位學(xué)生最終評價結(jié)果為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項中的一項.評價組隨機抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:(1)在這次評價中,一共抽查了

名學(xué)生;(2)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在扇形的圓心角度數(shù)為

度;(3)請將頻數(shù)分布直方圖補充完整;(4)如果全市九年級學(xué)生有8000名,那么在試卷評講課中,“獨立思考”的九年級學(xué)生約有多少人?24.在某小學(xué)“演講大賽”選拔賽初賽中,甲、乙、丙三位評委對小選手的綜合表現(xiàn),分別給出“待定”(用字母W表示)或“通過”(用字母P表示)的結(jié)論.(1)請用樹狀圖表示出三位評委給小選手琪琪的所有可能的結(jié)論;(2)對于小選手琪琪,只有甲、乙兩位評委給出相同結(jié)論的概率是多少?(3)比賽規(guī)定,三位評委中至少有兩位給出“通過”的結(jié)論,則小選手可入圍進入復(fù)賽,問琪琪進入復(fù)賽的概率是多少?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】

先求出不等式的解集,再在數(shù)軸上表示出來即可.【題目詳解】移項得,2x<1+1,合并同類項得,2x<2,x的系數(shù)化為1得,x<1.在數(shù)軸上表示為:.故選D.【題目點撥】本題考查了解一元一次不等式,熟練掌握運算法則是解題的關(guān)鍵.2、A【解題分析】

根據(jù)已知得出圓錐的底面半徑及母線長,那么利用圓錐的側(cè)面積=底面周長×母線長÷2求出即可.【題目詳解】∵圓錐的軸截面是一個邊長為3cm的等邊三角形,∴底面半徑=1.5cm,底面周長=3πcm,∴圓錐的側(cè)面積=12×3π×3=4.5πcm2故選A.【題目點撥】此題主要考查了圓錐的有關(guān)計算,關(guān)鍵是利用圓錐的側(cè)面積=底面周長×母線長÷2得出.3、A【解題分析】

將代入原式,計算可得.【題目詳解】解:當時,原式,故選A.【題目點撥】本題主要考查分式的加減法,解題的關(guān)鍵是熟練掌握完全平方公式.4、D【解題分析】

根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得CD=AD,再根據(jù)等邊對等角的性質(zhì)可得∠A=∠ACD,然后根據(jù)正切函數(shù)的定義列式求出∠A的正切值,即為tan∠ACD的值.【題目詳解】∵CD是AB邊上的中線,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=,∴tan∠ACD的值.故選D.【題目點撥】本題考查了銳角三角函數(shù)的定義,直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),等邊對等角的性質(zhì),求出∠A=∠ACD是解本題的關(guān)鍵.5、B【解題分析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故選B.6、C【解題分析】

本題可從反比例函數(shù)圖象上的點E、M、D入手,分別找出△OCE、△OAD、矩形OABC的面積與|k|的關(guān)系,列出等式求出k值.【題目詳解】由題意得:E、M、D位于反比例函數(shù)圖象上,則,過點M作MG⊥y軸于點G,作MN⊥x軸于點N,則S□ONMG=|k|.又∵M為矩形ABCO對角線的交點,∴S矩形ABCO=4S□ONMG=4|k|,∵函數(shù)圖象在第一象限,k>0,∴.解得:k=1.故選C.【題目點撥】本題考查反比例函數(shù)系數(shù)k的幾何意義,過雙曲線上的任意一點分別向兩條坐標軸作垂線,與坐標軸圍成的矩形面積就等于|k|,本知識點是中考的重要考點,同學(xué)們應(yīng)高度關(guān)注.7、C【解題分析】

根據(jù)a、b的符號,針對二次函數(shù)、一次函數(shù)的圖象位置,開口方向,分類討論,逐一排除.【題目詳解】當a>0時,二次函數(shù)的圖象開口向上,一次函數(shù)的圖象經(jīng)過一、三或一、二、三或一、三、四象限,故A、D不正確;由B、C中二次函數(shù)的圖象可知,對稱軸x=->0,且a>0,則b<0,但B中,一次函數(shù)a>0,b>0,排除B.故選C.8、D【解題分析】如圖,因為,∠1=30°,∠1+∠3=60°,所以∠3=30°,因為AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故選D.9、D【解題分析】分析:直接利用三角形外角的性質(zhì)以及鄰補角的關(guān)系得出∠B以及∠ODC度數(shù),再利用圓周角定理以及三角形內(nèi)角和定理得出答案.詳解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故選D.點睛:此題主要考查了圓周角定理以及三角形內(nèi)角和定理等知識,正確得出∠AOC度數(shù)是解題關(guān)鍵.10、C【解題分析】

根據(jù)等腰三角形的性質(zhì)和勾股定理解答即可.【題目詳解】解:∵點A,D分別對應(yīng)數(shù)軸上的實數(shù)﹣2,2,∴AD=4,∵等腰△ABC的底邊BC與底邊上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故選:C.【題目點撥】此題考查等腰三角形的性質(zhì),注意等腰三角形的三線合一,熟練運用勾股定理.二、填空題(本大題共6個小題,每小題3分,共18分)11、2.1×【解題分析】

絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×11-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的1的個數(shù)所決定.【題目詳解】解:1.111121=2.1×11-2.

故答案為:2.1×11-2.【題目點撥】本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×11-n,其中1≤|a|<11,n由原數(shù)左邊起第一個不為零的數(shù)字前面的1的個數(shù)所決定.12、1【解題分析】分析:直接利用二次根式以及絕對值的性質(zhì)分別化簡得出答案.詳解:原式=5-3=1.故答案為1.點睛:此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關(guān)鍵.13、1【解題分析】

方程常數(shù)項移到右邊,兩邊加上25配方得到結(jié)果,求出m與n的值即可.【題目詳解】解:∵x2+10x-11=0,∴x2+10x=11,則x2+10x+25=11+25,即(x+5)2=36,∴m=5、n=36,∴m+n=1,故答案為1.【題目點撥】此題考查了解一元二次方程-配方法,熟練掌握完全平方公式是解本題的關(guān)鍵.14、22.5【解題分析】∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=(180°-45°)=67.5°,∴∠ACP度數(shù)是67.5°-45°=22.5°15、【解題分析】分析:連接AA′,根據(jù)勾股定理求出AC=AC′,及AA′的長,然后根據(jù)勾股定理的逆定理得出△ACA′為等腰直角三角形,然后根據(jù)弧長公式求解即可.詳解:連接AA′,如圖所示.∵AC=A′C=,AA′=,∴AC2+A′C2=AA′2,∴△ACA′為等腰直角三角形,∴∠ACA′=90°,∴點A走過的路徑長=×2πAC=π.故答案為:π.點睛:本題主要考查了幾何變換的類型以及勾股定理及逆定理的運用,弧長公式,解題時注意:在旋轉(zhuǎn)變換下,對應(yīng)線段相等.解決問題的關(guān)鍵是找出變換的規(guī)律,根據(jù)弧長公式求解.16、51.【解題分析】∵一組數(shù)據(jù):3,a,4,6,7,它們的平均數(shù)是5,∴,解得,,∴=1.故答案為5,1.三、解答題(共8題,共72分)17、50見解析(3)115.2°(4)【解題分析】試題分析:(1)用最喜歡籃球的人數(shù)除以它所占的百分比可得總共的學(xué)生數(shù);(2)用學(xué)生的總?cè)藬?shù)乘以各部分所占的百分比,可得最喜歡足球的人數(shù)和其他的人數(shù),即可把條形統(tǒng)計圖補充完整;(3)根據(jù)圓心角的度數(shù)=360o×它所占的百分比計算;(4)列出樹狀圖可知,共有20種等可能的結(jié)果,兩名同學(xué)恰為一男一女的有12種情況,從而可求出答案.解:(1)由題意可知該班的總?cè)藬?shù)=15÷30%=50(名)故答案為50;(2)足球項目所占的人數(shù)=50×18%=9(名),所以其它項目所占人數(shù)=50﹣15﹣9﹣16=10(名)補全條形統(tǒng)計圖如圖所示:(3)“乒乓球”部分所對應(yīng)的圓心角度數(shù)=360°×=115.2°,故答案為115.2°;(4)畫樹狀圖如圖.由圖可知,共有20種等可能的結(jié)果,兩名同學(xué)恰為一男一女的有12種情況,所以P(恰好選出一男一女)==.點睛:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,概率的計算.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息及掌握概率的計算方法是解決問題的關(guān)鍵.18、(1)證明見解析;(2).【解題分析】

(1)根據(jù)切線的判定定理得到BC是⊙O的切線,再利用切線長定理證明即可;(2)根據(jù)含30°的直角三角形的性質(zhì)、正切的定義計算即可.【題目詳解】(1)∵AB是⊙O直徑,BC⊥AB,∴BC是⊙O的切線,∵CD切⊙O于點D,∴BC=CD;(2)連接BD,∵BC=CD,∠C=60°,∴△BCD是等邊三角形,∴BD=BC=3,∠CBD=60°,∴∠ABD=30°,∵AB是⊙O直徑,∴∠ADB=90°,∴AD=BD?tan∠ABD=.【題目點撥】本題考查了切線的性質(zhì)、直角三角形的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.19、(1)①AE+BF=EC;②AF+BF=2CE;(2)AF﹣BF=2CE,證明見解析;(3)FG=.【解題分析】

(1)①只要證明△ACE≌△BCD(AAS),推出AE=BD,CE=CD,推出四邊形CEFD為正方形,即可解決問題;②利用①中結(jié)論即可解決問題;(2)首先證明BF-AF=2CE.由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG∥EC,可知,由此即可解決問題;【題目詳解】解:(1)證明:①如圖1,過點C做CD⊥BF,交FB的延長線于點D,∵CE⊥MN,CD⊥BF,∴∠CEA=∠D=90°,∵CE⊥MN,CD⊥BF,BF⊥MN,∴四邊形CEFD為矩形,∴∠ECD=90°,又∵∠ACB=90°,∴∠ACB-∠ECB=∠ECD-∠ECB,即∠ACE=∠BCD,又∵△ABC為等腰直角三角形,∴AC=BC,在△ACE和△BCD中,,∴△ACE≌△BCD(AAS),∴AE=BD,CE=CD,又∵四邊形CEFD為矩形,∴四邊形CEFD為正方形,∴CE=EF=DF=CD,∴AE+BF=DB+BF=DF=EC.②由①可知:AF+BF=AE+EF+BF=BD+EF+BF=DF+EF=2CE,(2)AF-BF=2CE圖2中,過點C作CG⊥BF,交BF延長線于點G,∵AC=BC可得∠AEC=∠CGB,∠ACE=∠BCG,在△CBG和△CAE中,,∴△CBG≌△CAE(AAS),∴AE=BG,∵AF=AE+EF,∴AF=BG+CE=BF+FG+CE=2CE+BF,∴AF-BF=2CE;(3)如圖3,過點C做CD⊥BF,交FB的于點D,∵AC=BC可得∠AEC=∠CDB,∠ACE=∠BCD,在△CBD和△CAE中,,∴△CBD≌△CAE(AAS),∴AE=BD,∵AF=AE-EF,∴AF=BD-CE=BF-FD-CE=BF-2CE,∴BF-AF=2CE.∵AF=3,BF=7,∴CE=EF=2,AE=AF+EF=5,∵FG∥EC,∴,∴,∴FG=.【題目點撥】本題考查幾何變換綜合題、正方形的判定和性質(zhì)、全等三角形的判定和性質(zhì)、平行線分線段成比例定理、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題.20、2﹣【解題分析】試題分析:利用相反數(shù)和倒數(shù)的定義即可得出.先因式分解,再代入求出即可.試題解析:是的相反數(shù),是的倒數(shù),當時,點睛:只有符號不同的兩個數(shù)互為相反數(shù).乘積為的兩個數(shù)互為倒數(shù).21、x+1,2.【解題分析】

先根據(jù)單項式乘以多項式的運算法則、平方差公式計算后,再去掉括號,合并同類項化為最簡后代入求值即可.【題目詳解】原式=x2+x﹣(x2﹣1)=x2+x﹣x2+1=x+1,當x=1時,原式=2.【題目點撥】本題考查了整式的化簡求值,根據(jù)整式的運算法則先把知識化為最簡是解決問題的關(guān)鍵.22、(1)甲種商品的銷售單價900元,乙種商品的銷售單價600元;(1)至少銷售甲種商品1萬件.【解題分析】

(1)可設(shè)甲種商品的銷售單價x元,乙種商品的銷售單價y元,根據(jù)等量關(guān)系:①1件甲種商品與3件乙種商品的銷售收入相同,②3件甲種商品比1件乙種商品的銷售收入多1500元,列出方程組求解即可;(1)可設(shè)銷售甲種商品a萬件,根據(jù)甲、乙兩種商品的銷售總收入不低于5400萬元,列出不等式求解即可.【題目詳解】(1)設(shè)甲種商品的銷售單價x元,乙種商品的銷售單價y元,依題意有:,解得.答:甲種商品的銷售單價900元,乙種商品的銷售單價600元;(1)設(shè)銷售甲種商品a萬件,依題意有:900a+600(8﹣a)≥5400,解得:a≥1.答:至少銷售甲種商品1萬件.【題目點撥】本題考查了一元一次不等式及二元一次方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論