版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省杜爾伯特縣2024屆中考數(shù)學模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.下列計算,結果等于a4的是()A.a(chǎn)+3aB.a(chǎn)5﹣aC.(a2)2D.a(chǎn)8÷a22.如圖,平行于BC的直線DE把△ABC分成面積相等的兩部分,則的值為()A.1 B. C.-1 D.+13.若點A(2,),B(-3,),C(-1,)三點在拋物線的圖象上,則、、的大小關系是()A.B.C.D.4.如圖,點A、B、C都在⊙O上,若∠AOC=140°,則∠B的度數(shù)是()A.70° B.80° C.110° D.140°5.如圖,左、右并排的兩棵樹AB和CD,小樹的高AB=6m,大樹的高CD=9m,小明估計自己眼睛距地面EF=1.5m,當他站在F點時恰好看到大樹頂端C點.已知此時他與小樹的距離BF=2m,則兩棵樹之間的距離BD是()A.1m B.m C.3m D.m6.如圖,圓O是等邊三角形內切圓,則∠BOC的度數(shù)是()A.60° B.100° C.110° D.120°7.某同學將自己7次體育測試成績(單位:分)繪制成折線統(tǒng)計圖,則該同學7次測試成績的眾數(shù)和中位數(shù)分別是()A.50和48 B.50和47 C.48和48 D.48和438.某圓錐的主視圖是一個邊長為3cm的等邊三角形,那么這個圓錐的側面積是()A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm29.如圖,直線AB∥CD,則下列結論正確的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°10.如圖,由兩個相同的正方體和一個圓錐體組成一個立體圖形,其俯視圖是A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,⊙O的半徑為2,AB為⊙O的直徑,P為AB延長線上一點,過點P作⊙O的切線,切點為C.若PC=2,則BC的長為______.12.如圖,圓O的直徑AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的長為________.13.如圖,△ABC中,CD⊥AB于D,E是AC的中點.若AD=6,DE=5,則CD的長等于.14.如圖,把一個直角三角尺ACB繞著30°角的頂點B順時針旋轉,使得點A與CB的延長線上的點E重合連接CD,則∠BDC的度數(shù)為_____度.15.如圖,在正方形中,對角線與相交于點,為上一點,,為的中點.若的周長為18,則的長為________.16.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為_____.三、解答題(共8題,共72分)17.(8分)李寧準備完成題目;解二元一次方程組,發(fā)現(xiàn)系數(shù)“□”印刷不清楚.他把“□”猜成3,請你解二元一次方程組;張老師說:“你猜錯了”,我看到該題標準答案的結果x、y是一對相反數(shù),通過計算說明原題中“□”是幾?18.(8分)甲、乙兩人在玩轉盤游戲時,把兩個可以自由轉動的轉盤A,B都分成3等份的扇形區(qū)域,并在每一小區(qū)域內標上數(shù)字(如圖所示),游戲規(guī)則:同時轉動兩個轉盤,當轉盤停止后,若指針所指兩個區(qū)域的數(shù)字之和為3的倍數(shù),則甲獲勝;若指針所指兩個區(qū)域的數(shù)字之和為4的倍數(shù),則乙獲勝.如果指針落在分割線上,則需要重新轉動轉盤.請問這個游戲對甲、乙雙方公平嗎?說明理由.19.(8分)如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A作BC的平行線交CE的延長線與F,且AF=BD,連接BF。求證:D是BC的中點;如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論。20.(8分)“低碳生活,綠色出行”是我們倡導的一種生活方式,有關部門抽樣調查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計圖:(1)填空:樣本中的總人數(shù)為;開私家車的人數(shù)m=;扇形統(tǒng)計圖中“騎自行車”所在扇形的圓心角為度;(2)補全條形統(tǒng)計圖;(3)該單位共有2000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?21.(8分)八年級(1)班學生在完成課題學習“體質健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓練,訓練后都進行了測試.現(xiàn)將項目選擇情況及訓練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.請你根據(jù)上面提供的信息回答下列問題:扇形圖中跳繩部分的扇形圓心角為度,該班共有學生人,訓練后籃球定時定點投籃平均每個人的進球數(shù)是.老師決定從選擇鉛球訓練的3名男生和1名女生中任選兩名學生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.22.(10分)某品牌手機去年每臺的售價y(元)與月份x之間滿足函數(shù)關系:y=﹣50x+2600,去年的月銷量p(萬臺)與月份x之間成一次函數(shù)關系,其中1﹣6月份的銷售情況如下表:月份(x)1月2月3月4月5月6月銷售量(p)3.9萬臺4.0萬臺4.1萬臺4.2萬臺4.3萬臺4.4萬臺(1)求p關于x的函數(shù)關系式;(2)求該品牌手機在去年哪個月的銷售金額最大?最大是多少萬元?(3)今年1月份該品牌手機的售價比去年12月份下降了m%,而銷售量也比去年12月份下降了1.5m%.今年2月份,經(jīng)銷商決定對該手機以1月份價格的“八折”銷售,這樣2月份的銷售量比今年1月份增加了1.5萬臺.若今年2月份這種品牌手機的銷售額為6400萬元,求m的值.23.(12分)先化簡,再求值:,其中a為不等式組的整數(shù)解.24.某商場服裝部分為了解服裝的銷售情況,統(tǒng)計了每位營業(yè)員在某月的銷售額(單位:萬元),并根據(jù)統(tǒng)計的這組銷售額的數(shù)據(jù),繪制出如下的統(tǒng)計圖①和圖②,請根據(jù)相關信息,解答下列問題:(1)該商場服裝營業(yè)員的人數(shù)為,圖①中m的值為;(2)求統(tǒng)計的這組銷售額數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】
根據(jù)同底數(shù)冪的除法法則:底數(shù)不變,指數(shù)相減;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;冪的乘方法則:底數(shù)不變,指數(shù)相乘進行計算即可.【題目詳解】A.a(chǎn)+3a=4a,錯誤;B.a(chǎn)5和a不是同類項,不能合并,故此選項錯誤;C.(a2)2=a4,正確;D.a(chǎn)8÷a2=a6,錯誤.故選C.【題目點撥】本題主要考查了同底數(shù)冪的乘除法,以及冪的乘方,關鍵是正確掌握計算法則.2、C【解題分析】【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性質結合S△ADE=S四邊形BCED,可得出,結合BD=AB﹣AD即可求出的值.【題目詳解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四邊形BCED,S△ABC=S△ADE+S四邊形BCED,∴,∴,故選C.【題目點撥】本題考查了相似三角形的判定與性質,牢記相似三角形的面積比等于相似比的平方是解題的關鍵.3、C【解題分析】首先求出二次函數(shù)的圖象的對稱軸x==2,且由a=1>0,可知其開口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在對稱軸的左側,而在對稱軸的左側,y隨x得增大而減小,所以.總結可得.故選C.點睛:此題主要考查了二次函數(shù)的圖像與性質,解答此題的關鍵是(1)找到二次函數(shù)的對稱軸;(2)掌握二次函數(shù)的圖象性質.4、C【解題分析】分析:作對的圓周角∠APC,如圖,利用圓內接四邊形的性質得到∠P=40°,然后根據(jù)圓周角定理求∠AOC的度數(shù).詳解:作對的圓周角∠APC,如圖,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故選:C.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.5、B【解題分析】
由∠AGE=∠CHE=90°,∠AEG=∠CEH可證明△AEG∽△CEH,根據(jù)相似三角形對應邊成比例求出GH的長即BD的長即可.【題目詳解】由題意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,∵AG⊥EH,CH⊥EH,∴∠AGE=∠CHE=90°,∵∠AEG=∠CEH,∴△AEG∽△CEH,∴==,即=,解得:GH=,則BD=GH=m,故選:B.【題目點撥】本題考查了相似三角形的應用,解題的關鍵是從實際問題中抽象出相似三角形.6、D【解題分析】
由三角形內切定義可知OB、OC是∠ABC、∠ACB的角平分線,所以可得到關系式∠OBC+∠OCB=(∠ABC+∠ACB),把對應數(shù)值代入即可求得∠BOC的值.【題目詳解】解:∵△ABC是等邊三角形,∴∠A=∠ABC=∠ACB=60°,∵圓O是等邊三角形內切圓,∴OB、OC是∠ABC、∠ACB的角平分線,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故選D.【題目點撥】此題主要考查了三角形的內切圓與內心以及切線的性質.關鍵是要知道關系式∠OBC+∠OCB=(∠ABC+∠ACB).7、A【解題分析】
由折線統(tǒng)計圖,可得該同學7次體育測試成績,進而求出眾數(shù)和中位數(shù)即可.【題目詳解】由折線統(tǒng)計圖,得:42,43,47,48,49,50,50,7次測試成績的眾數(shù)為50,中位數(shù)為48,故選:A.【題目點撥】本題考查了眾數(shù)和中位數(shù),解題的關鍵是利用折線統(tǒng)計圖獲取有效的信息.8、A【解題分析】
根據(jù)已知得出圓錐的底面半徑及母線長,那么利用圓錐的側面積=底面周長×母線長÷2求出即可.【題目詳解】∵圓錐的軸截面是一個邊長為3cm的等邊三角形,∴底面半徑=1.5cm,底面周長=3πcm,∴圓錐的側面積=12×3π×3=4.5πcm2故選A.【題目點撥】此題主要考查了圓錐的有關計算,關鍵是利用圓錐的側面積=底面周長×母線長÷2得出.9、D【解題分析】分析:依據(jù)AB∥CD,可得∠3+∠5=180°,再根據(jù)∠5=∠4,即可得出∠3+∠4=180°.詳解:如圖,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故選D.點睛:本題考查了平行線的性質,解題時注意:兩直線平行,同旁內角互補.10、D【解題分析】
由圓錐的俯視圖可快速得出答案.【題目詳解】找到從上面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在俯視圖中,從幾何體的上面看:可以得到兩個正方形,右邊的正方形里面有一個內接圓.故選D.【題目點撥】本題考查立體圖形的三視圖,熟記基本立體圖的三視圖是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解題分析】
連接OC,根據(jù)勾股定理計算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,則∠COP=60°,可得△OCB是等邊三角形,從而得結論.【題目詳解】連接OC,∵PC是⊙O的切線,∴OC⊥PC,∴∠OCP=90°,∵PC=2,OC=2,∴OP===4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等邊三角形,∴BC=OB=2,故答案為2【題目點撥】本題考查切線的性質、等腰三角形的性質、等邊三角形的判定等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.12、【解題分析】試題分析:因為OC=OA,所以∠ACO=,所以∠AOC=45°,又直徑垂直于弦,,所以CE=,所以CD=2CE=.考點:1.解直角三角形、2.垂徑定理.13、1.【解題分析】
由“直角三角形斜邊上的中線等于斜邊的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理來求線段CD的長度即可.【題目詳解】∵△ABC中,CD⊥AB于D,E是AC的中點,DE=5,∴DE=AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,則根據(jù)勾股定理,得.故答案是:1.14、1【解題分析】
根據(jù)△EBD由△ABC旋轉而成,得到△ABC≌△EBD,則BC=BD,∠EBD=∠ABC=30°,則有∠BDC=∠BCD,∠DBC=180﹣30°=10°,化簡計算即可得出.【題目詳解】解:∵△EBD由△ABC旋轉而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=10°,∴;故答案為:1.【題目點撥】此題考查旋轉的性質,即圖形旋轉后與原圖形全等.15、【解題分析】
先根據(jù)直角三角形的性質求出DE的長,再由勾股定理得出CD的長,進而可得出BE的長,由三角形中位線定理即可得出結論.【題目詳解】解:∵四邊形是正方形,∴,,.在中,為的中點,∴.∵的周長為18,,∴,∴.在中,根據(jù)勾股定理,得,∴,∴.在中,∵,為的中點,又∵為的中位線,∴.故答案為:.【題目點撥】本題考查的是正方形的性質,涉及到直角三角形的性質、三角形中位線定理等知識,難度適中.16、1【解題分析】
由∠ACD=∠B結合公共角∠A=∠A,即可證出△ACD∽△ABC,根據(jù)相似三角形的性質可得出=()2=,結合△ADC的面積為1,即可求出△BCD的面積.【題目詳解】∵∠ACD=∠B,∠DAC=∠CAB,∴△ACD∽△ABC,∴=()2=()2=,∴S△ABC=4S△ACD=4,∴S△BCD=S△ABC﹣S△ACD=4﹣1=1.故答案為1.【題目點撥】本題考查相似三角形的判定與性質,解題的關鍵是掌握相似三角形的判定與性質.三、解答題(共8題,共72分)17、(1);(2)-1【解題分析】
(1)②+①得出4x=-4,求出x,把x的值代入①求出y即可;(2)把x=-y代入x-y=4求出y,再求出x,最后把x、y代入②求出答案即可.【題目詳解】解:(1)①+②得,.將時代入①得,,∴.(2)設“□”為a,∵x、y是一對相反數(shù),∴把x=-y代入x-y=4得:-y-y=4,解得:y=-2,即x=2,所以方程組的解是,代入ax+y=-8得:2a-2=-8,解得:a=-1,即原題中“□”是-1.【題目點撥】本題考查了解二元一次方程組,也考查了二元一次方程組的解,能得出關于a的方程是解(2)的關鍵.18、見解析【解題分析】
解:不公平,理由如下:列表得:12321,22,23,231,32,33,341,42,43,4由表可知共有9種等可能的結果,其中數(shù)字之和為3的倍數(shù)的有3種結果,數(shù)字之和為4的倍數(shù)的有2種,則甲獲勝的概率為、乙獲勝的概率為,∵,∴這個游戲對甲、乙雙方不公平.【題目點撥】考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.19、(1)詳見解析;(2)詳見解析【解題分析】
(1)根據(jù)兩直線平行,內錯角相等求出∠AFE=∠DCE,然后利用“角角邊”證明△AEF和△DEC全等,再根據(jù)全等三角形的性質和等量關系即可求解;(2)由(1)知AF平行等于BD,易證四邊形AFBD是平行四邊形,而AB=AC,AD是中線,利用等腰三角形三線合一定理,可證AD⊥BC,即∠ADB=90°,那么可證四邊形AFBD是矩形.【題目詳解】(1)證明:∵AF∥BC,∴∠AFE=∠DCE,∵點E為AD的中點,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴CD=BD,∴D是BC的中點;(2)若AB=AC,則四邊形AFBD是矩形.理由如下:∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四邊形AFBD是矩形.【題目點撥】本題考查了矩形的判定,全等三角形的判定與性質,平行四邊形的判定,是基礎題,明確有一個角是直角的平行四邊形是矩形是解本題的關鍵.20、(1)80,20,72;(2)16,補圖見解析;(3)原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).【解題分析】試題分析:(1)用乘公交車的人數(shù)除以所占的百分比,計算即可求出總人數(shù),再用總人數(shù)乘以開私家車的所占的百分比求出m,用360°乘以騎自行車的所占的百分比計算即可得解:樣本中的總人數(shù)為:36÷45%=80人;開私家車的人數(shù)m=80×25%=20;扇形統(tǒng)計圖中“騎自行車”的圓心角為360°×(1-10%-25%-45%)=360°×20%=72°.(2)求出騎自行車的人數(shù),然后補全統(tǒng)計圖即可.(3)設原來開私家車的人中有x人改為騎自行車,表示出改后騎自行車的人數(shù)和開私家車的人數(shù),列式不等式,求解即可.試題解析:解:(1)80,20,72.(2)騎自行車的人數(shù)為:80×20%=16人,補全統(tǒng)計圖如圖所示;(3)設原來開私家車的人中有x人改為騎自行車,由題意得,1580答:原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).考點:1.條形統(tǒng)計圖;2.扇形統(tǒng)計圖;3.頻數(shù)、頻率和總量的關系;4.一元一次不等式的應用.21、(1)36,40,1;(2).【解題分析】
(1)先求出跳繩所占比例,再用比例乘以360°即可,用籃球的人數(shù)除以所占比例即可;根據(jù)加權平均數(shù)的概念計算訓練后籃球定時定點投籃人均進球數(shù).(2)畫出樹狀圖,根據(jù)概率公式求解即可.【題目詳解】(1)扇形圖中跳繩部分的扇形圓心角為360°×(1-10%-20%-10%-10%)=36度;
該班共有學生(2+1+7+4+1+1)÷10%=40人;
訓練后籃球定時定點投籃平均每個人的進球數(shù)是=1,
故答案為:36,40,1.(2)三名男生分別用A1,A2,A3表示,一名女生用B表示.根據(jù)題意,可畫樹形圖如下:由上圖可知,共有12種等可能的結果,選中兩名學生恰好是兩名男生(記為事件M)的結果有6種,∴P(M)==.22、(1)p=0.1x+3.8;(2)該品牌手機在去年七月份的銷售金額最大,最大為10125萬元;(3)m的值為1.【解題分析】
(1)直接利用待定系數(shù)法求一次函數(shù)解析式即可;(2)利用銷量×售價=銷售金額,進而利用二次函數(shù)最值求法求出即可;(3)分別表示出1,2月份的銷量以及售價,進而利用今年2月份這種品牌手機的銷售額為6400萬元,得出等式求出即可.【題目詳解】(1)設p=kx+b,把p=3.9,x=1;p=4.0,x=2分別代入p=kx+b中,得:解得:,∴p=0.1x+3.8;(2)設該品牌手機在去年第x個月的銷售金額為w萬元,w=(﹣50x+2600)(0.1x+3.8)=﹣5x2+70x+9880=﹣5(x﹣7)2+10125,當x=7時,w最大=10125,答:該品牌手機在去年七月份的銷售金額最大,最大為10125萬元;(3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鄭州澍青醫(yī)學高等專科學校《廣告策劃與創(chuàng)意》2023-2024學年第一學期期末試卷
- 小學2025-2026學年度第一學期教學工作計劃
- 長春汽車工業(yè)高等??茖W?!毒频旯芾硇畔⑾到y(tǒng)》2023-2024學年第一學期期末試卷
- 食品生產(chǎn)過程中交叉污染預防措施
- 保險入職培訓模板
- 專業(yè)基礎知識(給排水)-2020年注冊公用設備工程師(給水排水)《專業(yè)基礎知識》真題
- 代表愛情的花語
- 統(tǒng)編版五年級語文上冊寒假作業(yè)(九)(有答案)
- 人教版四年級數(shù)學下冊第一次月考綜合卷(含答案)
- 二零二五年特種設備特種買賣合同3篇
- 下套管危害識別和風險評估
- 翼狀胬肉病人的護理
- GB/T 12914-2008紙和紙板抗張強度的測定
- GB/T 1185-2006光學零件表面疵病
- ps6000自動化系統(tǒng)用戶操作及問題處理培訓
- 家庭教養(yǎng)方式問卷(含評分標準)
- 城市軌道交通安全管理課件(完整版)
- 線纜包覆擠塑模設計和原理
- TSG ZF001-2006 安全閥安全技術監(jiān)察規(guī)程
- 部編版二年級語文下冊《蜘蛛開店》
- 鍋爐升降平臺管理
評論
0/150
提交評論