版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年福建省龍巖市一級達標校高一上數(shù)學期末聯(lián)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.三條直線l1:ax+by-1=0,l2:2x+(a+2)y+1=0,l3:bx-2y+1=0,若l1,l2都和l3垂直,則a+b等于()A. B.6C.或6 D.0或42.計算A.-2 B.-1C.0 D.13.若表示空間中兩條不重合的直線,表示空間中兩個不重合的平面,則下列命題中正確的是()A.若,則 B.若,則C.若,則 D.若,則4.設(shè)函數(shù),若關(guān)于的方程有四個不同的解,,,,且,則的取值范圍是()A. B.C. D.5.已知一個空間幾何體的三視圖如圖所示,根據(jù)圖中標出的尺寸(單位:),可得這個幾何體的體積(單位:cm3)是A.4 B.5C.6 D.76.命題p:?x∈N,x3>x2的否定形式?p為()A.?x∈N,x3≤x2 B.?x∈N,x3>x2C.?x∈N,x3<x2 D.?x∈N,x3≤x27.已知某幾何體的三視圖如圖所示,則該幾何體的最長棱為()A.4 B.C. D.28.設(shè),則下列不等式中不成立的是()A. B.C. D.9.若集合中的元素是△ABC的三邊長,則△ABC一定不是()A.銳角三角形 B.直角三角形C.鈍角三角形 D.等腰三角形10.用二分法求方程的近似解時,可以取的一個區(qū)間是A. B.C. D.11.若函數(shù)的定義域為R,則下列函數(shù)必為奇函數(shù)的是()A. B.C. D.12.已知扇形周長為40,當扇形的面積最大時,扇形的圓心角為()A. B.C.3 D.2二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知是定義在上的奇函數(shù),且為偶函數(shù),對于函數(shù)有下列幾種描述:①是周期函數(shù);②是它的一條對稱軸;③是它圖象的一個對稱中心;④當時,它一定取最大值;其中描述正確的是__________14.已知集合,,則集合中元素的個數(shù)為__________15.已知向量,,,則=_____.16.經(jīng)過點且在軸和軸上的截距相等的直線的方程為__________三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.某農(nóng)戶利用墻角線互相垂直的兩面墻,將一塊可折疊的長為am的籬笆墻圍成一個雞圈,籬笆的兩個端點A,B分別在這兩墻角線上,現(xiàn)有三種方案:方案甲:如圖1,圍成區(qū)域為三角形;方案乙:如圖2,圍成區(qū)域為矩形;方案丙:如圖3,圍成區(qū)域為梯形,且.(1)在方案乙、丙中,設(shè),分別用x表示圍成區(qū)域的面積,;(2)為使圍成雞圈面積最大,該農(nóng)戶應該選擇哪一種方案,并說明理由.18.已知函數(shù)對任意實數(shù)x,y滿足,,當時,判斷在R上的單調(diào)性,并證明你的結(jié)論是否存在實數(shù)a使f
成立?若存在求出實數(shù)a;若不存在,則說明理由19.已知為的三個內(nèi)角,向量與向量共線,且角為銳角.(1)求角的大小;(2)求函數(shù)的值域.20.已知函數(shù),且的解集為.(1)求函數(shù)的解析式;(2)設(shè),若對于任意的、都有,求的最小值.21.已知函數(shù)其中)的圖象與x軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最低點為(1)求的解析式;(2)當,求的值域22.已知,,計算:(1)(2)
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、C【解析】根據(jù)相互垂直的兩直線斜率之間的關(guān)系對b分類討論即可得出【詳解】l1,l2都和l3垂直,①若b=0,則a+2=0,解得a=﹣2,∴a+b=﹣2②若b≠0,則1,1,聯(lián)立解得a=2,b=4,∴a+b=6綜上可得:a+b的值為﹣2或6故選C【點睛】本題考查了相互垂直的直線斜率之間的關(guān)系、分類討論方法,考查了推理能力與計算能力,屬于基礎(chǔ)題2、C【解析】.故選C.3、C【解析】利用空間位置關(guān)系的判斷及性質(zhì)定理進行判斷或舉反例判斷【詳解】對于A,若n?平面α,顯然結(jié)論錯誤,故A錯誤;對于B,若m?α,n?β,α∥β,則m∥n或m,n異面,故B錯誤;對于C,若m⊥n,m⊥α,n⊥β,則α⊥β,根據(jù)面面垂直的判定定理進行判定,故C正確;對于D,若α⊥β,m?α,n?β,則m,n位置關(guān)系不能確定,故D錯誤故選C【點睛】本題考查了空間線面位置關(guān)系的性質(zhì)與判斷,屬于中檔題4、A【解析】根據(jù)圖象可得:,,,.,則.令,,求函數(shù)的值域,即可得出結(jié)果.【詳解】畫出函數(shù)的大致圖象如下:根據(jù)圖象可得:若方程有四個不同的解,,,,且,則,,,.,,,則.令,,而函數(shù)在單調(diào)遞增,所以,則.故選:A.【點睛】本題考查函數(shù)的圖象與性質(zhì),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、數(shù)形結(jié)合思想,考查運算求解能力,求解時注意借助圖象分析問題,屬于中檔題.5、A【解析】如圖三視圖復原的幾何體是底面為直角梯形,是直角梯形,,一條側(cè)棱垂直直角梯形的直角頂點的四棱錐,即平面所以幾何體的體積為:故選A【點睛】本題考查幾何體的三視圖,幾何體的表面積的求法,準確判斷幾何體的形狀是解題的關(guān)鍵6、D【解析】根據(jù)含有一個量詞命題的否定的定義求解.【詳解】因為命題p:?x∈N,x3>x2的是全稱量詞命題,其否定是存在量詞命題,所以?p:?x∈N,x3≤x2故選:D【點睛】本題主要考查含有一個量詞命題的否定,還考查了理解辨析的能力,屬于基礎(chǔ)題.7、B【解析】根據(jù)三視圖得到幾何體的直觀圖,然后結(jié)合圖中的數(shù)據(jù)計算出各棱的長度,進而可得最長棱【詳解】由三視圖可得,該幾何體是如圖所示的四棱錐,底面是邊長為2的正方形,側(cè)面是邊長為2的正三角形,且側(cè)面底面根據(jù)圖形可得四棱錐中的最長棱為和,結(jié)合所給數(shù)據(jù)可得,所以該四棱錐的最長棱為故選B【點睛】在由三視圖還原空間幾何體時,要結(jié)合三個視圖綜合考慮,根據(jù)三視圖表示的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線、不可見輪廓線在三視圖中為虛線.在還原空間幾何體實際形狀時,一般是以主視圖和俯視圖為主,結(jié)合左視圖進行綜合考慮.熟悉常見幾何體的三視圖,能由三視圖得到幾何體的直觀圖是解題關(guān)鍵.考查空間想象能力和計算能力8、B【解析】對于A,C,D利用不等式的性質(zhì)分析即可,對于B舉反例即可【詳解】對于A,因為,所以,所以,即,所以A成立;對于B,若,,則,,此時,所以B不成立;對于C,因為,所以,所以C成立;對于D,因為,所以,則,所以D成立,故選:B.【點睛】本題考查不等式的性質(zhì)的應用,屬于基礎(chǔ)題.9、D【解析】根據(jù)集合元素的互異性即可判斷.【詳解】由題可知,集合中的元素是的三邊長,則,所以一定不是等腰三角形故選:D10、A【解析】分析:根據(jù)零點存在定理進行判斷詳解:令,因為,,所以可以取的一個區(qū)間是,選A.點睛:零點存在定理的主要內(nèi)容為區(qū)間端點函數(shù)值異號,是判斷零點存在的主要依據(jù).11、C【解析】根據(jù)奇偶性的定義判斷可得答案.【詳解】,由得是偶函數(shù),故A錯誤;,由得是偶函數(shù),故B錯誤;,由得是奇函數(shù),故C正確;,由得是偶函數(shù),故D錯誤;故選:C.12、D【解析】設(shè)出扇形半徑并表示出弧長后,由扇形面積公式求出取到面積最大時半徑的長度,代入圓心角弧度公式即可得解.【詳解】設(shè)扇形半徑,易得,則由已知該扇形弧長為.記扇形面積為,則,當且僅當,即時取到最大值,此時記扇形圓心角為,則故選:D二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、①③【解析】先對已知是定義在的奇函數(shù),且為偶函數(shù)用定義轉(zhuǎn)化為恒等式,再由兩個恒等式進行合理變形得出與四個命題有關(guān)的結(jié)論,通過推理證得①③正確.【詳解】因為為偶函數(shù),所以,即是它的一條對稱軸;又因為是定義在上的奇函數(shù),所以,即,則,,即是周期函數(shù),即①正確;因為是它的一條對稱軸且,所以()是它的對稱軸,即②錯誤;因為函數(shù)是奇函數(shù)且是以為周期周期函數(shù),所以,所以是它圖象的一個對稱中心,即③正確;因為是它的一條對稱軸,所以當時,函數(shù)取得最大值或最小值,即④不正確.故答案為:①③.14、2【解析】依題意,故,即元素個數(shù)為個.15、【解析】先根據(jù)向量的減法運算求得,再根據(jù)向量垂直的坐標表示,可得關(guān)于的方程,解方程即可求得的值.【詳解】因為向量,,所以則即解得故答案為:【點睛】本題考查了向量垂直的坐標關(guān)系,屬于基礎(chǔ)題.16、或【解析】根據(jù)題意將問題分直線過原點和不過原點兩種情況求解,然后結(jié)合待定系數(shù)法可得到所求的直線方程【詳解】(1)當直線過原點時,可設(shè)直線方程為,∵點在直線上,∴,∴直線方程為,即(2)當直線不過原點時,設(shè)直線方程,∵點在直線上,∴,∴,∴直線方程為,即綜上可得所求直線方程為或故答案為或【點睛】在求直線方程時,應先選擇適當形式的直線方程,并注意各種形式的方程所適用的條件,由于截距式不能表示與坐標軸垂直或經(jīng)過原點的直線,故在解題時若采用截距式,應注意分類討論,判斷截距是否為零,分為直線過原點和不過原點兩種情況求解.本題考查直線方程的求法和分類討論思想方法的運用三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1),;,.(2)農(nóng)戶應該選擇方案三,理由見解析.【解析】(1)根據(jù)矩形面積與梯形的面積公式表示即可得答案;(2)先根據(jù)基本不等式研究方案甲得面積的最大值為,再根據(jù)二次函數(shù)的性質(zhì)結(jié)合(1)研究,的最大值即可得答案.【小問1詳解】解:對于方案乙,當時,,所以矩形的面積,;對于方案丙,當時,,由于所以,所以梯形面積為,.【小問2詳解】解:對于方案甲,設(shè),則,所以三角形的面積為,當且僅當時等號成立,故方案甲的雞圈面積最大值為.對于方案乙,由(1)得,,當且僅當時取得最大值.故方案乙的雞圈面積最大值為;對于方案丙,,.當且僅當時取得最大值.故方案丙的雞圈面積最大值為;由于所以農(nóng)戶應該選擇方案丙,此時雞圈面積最大.18、(1)在上單調(diào)遞增,證明見解析;(2)存在,.【解析】(1)令,則,根據(jù)已知中函數(shù)對任意實數(shù)滿足,當時,易證得,由增函數(shù)的定義,即可得到在上單調(diào)遞增;(2)由已知中函數(shù)對任意實數(shù)滿足,,利用“湊”的思想,我們可得,結(jié)合(1)中函數(shù)在上單調(diào)遞增,我們可將轉(zhuǎn)化為一個關(guān)于的一元二次不等式,解不等式即可得到實數(shù)的取值范圍試題解析:(1)設(shè),∴,又,∴即,∴在上單調(diào)遞增(2)令,則,∴∴,∴,即,又在上單調(diào)遞增,∴,即,解得,故存在這樣的實數(shù),即考點:1.抽象函數(shù)及其應用;2.函數(shù)單調(diào)性的判斷與證明;3.解不等式.【方法點睛】本題主要考查的是抽象函數(shù)及其應用,函數(shù)單調(diào)性的判斷與證明,屬于中檔題,此類題目解題的核心思想就是對抽象函數(shù)進行變形處理,然后利用定義變形求出的大小關(guān)系,進而得到函數(shù)的單調(diào)性,對于解不等式,需要經(jīng)常用到的利用“湊”的思想,對已知的函數(shù)值進行轉(zhuǎn)化,求出常數(shù)所對的函數(shù)值,從而利用前面證明的函數(shù)的單調(diào)性進行轉(zhuǎn)化為關(guān)于的一元二次不等式,因此正確對抽象函數(shù)關(guān)系的變形以及利用“湊”的思想,對已知的函數(shù)值進行轉(zhuǎn)化是解決此類問題的關(guān)鍵.19、(1);(2).【解析】(1)根據(jù)平行向量的坐標關(guān)系即可得到(2﹣2sinA)(1+sinA)﹣(sinA+cosA)(sinA﹣cosA)=0,這樣即可解出tan2A,結(jié)合A為銳角,即可求出A;(2)由B+C便得C,從而得到,利用二倍角的余弦公式及兩角差的正余弦公式即可化簡原函數(shù)y=1+sin(B),由前面知0,從而可得到B的范圍,結(jié)合正弦函數(shù)的圖象即可得到的范圍,即可得出原函數(shù)的值域【詳解】(1)由m∥n,得(2﹣2sinA)(1+sinA)﹣(sinA+cosA)(sinA﹣cosA)=0,得到2(1-sin2A)-sin2A+cos2A=0,所以2cos2A-sin2A+cos2A=0,即3cos2A-sin2A=0得,所以且為銳角,則.(2)由(1)知,,即,=,所以,=,且,則,所以,則,即函數(shù)的值域為.【點睛】本題考查平行向量的坐標的關(guān)系,同角基本關(guān)系及向量數(shù)量積的計算公式,考查了利用正弦函數(shù)的圖象求最值及二倍角的余弦公式,兩角差的正余弦公式等,屬于綜合題20、(1);(2)的最小值為.【解析】(1)利用根與系數(shù)的關(guān)系可求得、的值,即可得出函數(shù)的解析式;(2)利用二次函數(shù)和指數(shù)函數(shù)的基本性質(zhì)可求得函數(shù)在區(qū)間上的最大值和最小值,由已知可得出,由此可求得實數(shù)的最小值.【小問1詳解】解:因為的解集為,所以的根為、,由韋達定理可得,即,,所以.【小問2詳解】解:由(1)可得,當時,,故當時,,因為對于任意的、都有,即求,轉(zhuǎn)化為,而,,所以,.所以的最小值為.21、(1);(2)【解析】(1)根據(jù)最低點M可求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年學校常見病防治工作制度樣本(二篇)
- 2024年學校少先隊員工作計劃范例(二篇)
- 2024年寒假學習計劃書例文(四篇)
- 2024年幼兒園中班半日活動計劃(二篇)
- 2024年單位勞動合同參考范文(五篇)
- 2024年學校會計個人工作計劃例文(三篇)
- 2024年吊車包月租賃合同參考范文(二篇)
- 緊密型縣域醫(yī)療衛(wèi)生共同體監(jiān)測指標體系(2024版)
- 2024年小學班主任德育計劃范例(五篇)
- 2024年合作經(jīng)營協(xié)議經(jīng)典版(二篇)
- 英文譯稿《藥品注冊管理辦法》
- 最新部編版二年級上冊道德與法治第二單元我們的班級測試卷6
- 小學英語課堂教學策略與方法探討
- 5科學大玉米真好吃課件
- 新蘇教版2021-2022四年級科學上冊《8力與運動》教案
- DB44 T 552-2008 林業(yè)生態(tài) 術(shù)語
- 套裝門安裝工程施工方案(完整版)
- IBHRE國際心律失常考官委員會資料: ibhre 復習資料
- 洋蔥雜交制種高產(chǎn)栽培技術(shù)
- 堅定信心 努力拼搏——在公司大檢修動員會上的講話
- 水泵生產(chǎn)作業(yè)指導書
評論
0/150
提交評論