版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年山東省德州市夏津第一中學(xué)數(shù)學(xué)高一上期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知向量,其中,則的最小值為()A.1 B.2C. D.32.在下列函數(shù)中,既是奇函數(shù)并且定義域為是()A. B.C. D.3.已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對稱,函數(shù)是奇函數(shù),且當時,,則()A.-18 B.-12C.-8 D.-64.已知函數(shù)是上的增函數(shù)(其中且),則實數(shù)的取值范圍為()A. B.C. D.5.設(shè)函數(shù),則使成立的的取值范圍是A. B.C. D.6.函數(shù)在上的部分圖象如圖所示,則的值為A. B.C. D.7.若某商店將進貨單價為6元的商品按每件10元出售,則每天可銷售100件.現(xiàn)準備采用提高售價、減少進貨量的方法來增加利潤.已知這種商品的售價每提高1元,銷售量就要減少10件,那么要保證該商品每天的利潤在450元以上,售價的取值范圍是()A. B.C. D.8.已知函數(shù)的部分圖象如圖所示,則將的圖象向左平移個單位后,得到的圖象對應(yīng)的函數(shù)解析式為()A. B.C. D.9.命題“任意,都有”的否定為()A.存在,使得B.不存在,使得C.存在,使得D.對任意,都有10.一人打靶中連續(xù)射擊兩次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶 B.兩次都中靶C.兩次都不中靶 D.只有一次中靶11.若,則下列不等式成立的是()A. B.C. D.12.已知,則它們的大小關(guān)系是()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.在ABC中,H為BC上異于B,C的任一點,M為AH的中點,若,則λ+μ=_________14.已知,則________.15.已知為奇函數(shù),,則____________16.對于函數(shù)和,設(shè),,若存在、,使得,則稱與互為“零點關(guān)聯(lián)函數(shù)”.若函數(shù)與互為“零點關(guān)聯(lián)函數(shù)”,則實數(shù)的取值范圍為()A. B. C. D.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知全集,集合,(1)當時,求;(2)如果,求實數(shù)的取值范圍18.函數(shù)()(1)當時,①求函數(shù)的單調(diào)區(qū)間;②求函數(shù)在區(qū)間的值域;(2)當時,記函數(shù)的最大值為,求的表達式19.如圖所示,四棱錐中,底面為矩形,平面,,點為的中點()求證:平面()求證:平面平面20.已知函數(shù)(1)求的最小正周期;(2)求的單調(diào)遞增區(qū)間21.已知函數(shù)為奇函數(shù).(1)求實數(shù)a的值;(2)求的值.22.設(shè)函數(shù).(1)求函數(shù)在上的最小值;(2)若方程在上有四個不相等實根,求的范圍.
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、A【解析】利用向量坐標求模得方法,用表示,然后利用三角函數(shù)分析最小值【詳解】因為,所以,因為,所以,故的最小值為.故選A【點睛】本題將三角函數(shù)與向量綜合考察,利用三角函數(shù)得有界性,求模長得最值2、C【解析】分別判斷每個函數(shù)的定義域和奇偶性即可.【詳解】對A,的定義域為,故A錯誤;對B,是偶函數(shù),故B錯誤;對C,令,的定義域為,且,所以為奇函數(shù),故C正確.對D,的定義域為,故D錯誤.故選:C.3、D【解析】首先根據(jù)題意得到,再根據(jù)的奇偶性求解即可.【詳解】由題知:,所以當時,,又因為函數(shù)是奇函數(shù),所以.故選:D4、D【解析】利用對數(shù)函數(shù)、一次函數(shù)的性質(zhì)判斷的初步取值范圍,再由整體的單調(diào)性建立不等式,構(gòu)造函數(shù),利用函數(shù)的單調(diào)性求解不等式,從求得的取值范圍.【詳解】由題意必有,可得,且,整理為.令由換底公式有,由函數(shù)為增函數(shù),可得函數(shù)為增函數(shù),注意到,所以由,得,即,實數(shù)a的取值范圍為故選:D.5、A【解析】,定義域為,∵,∴函數(shù)為偶函數(shù),當時,函數(shù)單調(diào)遞增,根據(jù)偶函數(shù)性質(zhì)可知:得成立,∴,∴,∴的范圍為故答案為A.考點:抽象函數(shù)的不等式.【思路點晴】本題考查了偶函數(shù)的性質(zhì)和利用偶函數(shù)圖象的特點解決實際問題,屬于基礎(chǔ)題型,應(yīng)牢記.根據(jù)函數(shù)的表達式可知函數(shù)為偶函數(shù),根據(jù)初等函數(shù)的性質(zhì)判斷函數(shù)在大于零的單調(diào)性為遞增,根據(jù)偶函數(shù)關(guān)于原點對稱可知,距離原點越遠的點,函數(shù)值越大,把可轉(zhuǎn)化為,解絕對值不等式即可6、C【解析】由圖象最值和周期可求得和,代入可求得,從而得到函數(shù)解析式,代入可求得結(jié)果.【詳解】由圖象可得:,代入可得:本題正確選項:【點睛】本題考查三角函數(shù)值的求解,關(guān)鍵是能夠根據(jù)正弦函數(shù)的圖象求解出函數(shù)的解析式.7、B【解析】根據(jù)題意列出函數(shù)關(guān)系式,建立不等式求解即可.【詳解】設(shè)售價為,利潤為,則,由題意,即,解得,即售價應(yīng)定為元到元之間,故選:B.8、C【解析】根據(jù)給定圖象求出函數(shù)的解析式,再平移,代入計算作答.【詳解】觀察圖象得,令函數(shù)周期為,有,解得,則,而當時,,則有,又,則,因此,,將的圖象向左平移個單位得:,所以將的圖象向左平移個單位后,得到的圖象對應(yīng)的函數(shù)解析式為.故選:C9、A【解析】根據(jù)全稱量詞命題的否定為特稱量詞命題,改量詞,否結(jié)論,即得答案.【詳解】命題“任意,都有”的否定為“存在,使得”,故選:A10、C【解析】根據(jù)互斥事件定義依次判斷各個選項即可.【詳解】對于A,若恰好中靶一次,則“至少有一次中靶”與“至多有一次中靶”同時發(fā)生,不是互斥事件,A錯誤;對于B,若兩次都中靶,則“至少有一次中靶”與“兩次都中靶”同時發(fā)生,不是互斥事件,B錯誤;對于C,若兩次都不中靶,則“至少有一次中靶”與“兩次都不中靶”不能同時發(fā)生,是互斥事件,C正確;對于D,若只有一次中靶,則“至少有一次中靶”與“只有一次中靶”同時發(fā)生,不是互斥事件,D錯誤.故選:C.11、D【解析】根據(jù)不等式的性質(zhì)逐項判斷可得答案.【詳解】對于A,因為,,故,故A錯誤對于B,因為,,故,故,故B錯誤對于C,取,易得,故C錯誤對于D,因為,所以,故D正確故選:D12、B【解析】根據(jù)冪函數(shù)、指數(shù)函數(shù)性質(zhì)判斷大小關(guān)系.【詳解】由,所以.故選:B二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、##0.5【解析】根據(jù)題意,用表示出與,求出λ、μ的值即可【詳解】設(shè),則=(1﹣k)+k=,∴故答案為:14、【解析】將未知角化為已知角,結(jié)合三角恒等變換公式化簡即可.【詳解】解:因為,所以.故答案為:.【點睛】三角公式求值中變角的解題思路(1)當“已知角”有兩個時,“所求角”一般表示為兩個“已知角”的和或差的形式;(2)當“已知角”有一個時,此時應(yīng)著眼于“所求角”與“已知角”的和或差的關(guān)系,再應(yīng)用誘導(dǎo)公式把“所求角”變成“已知角”.15、【解析】根據(jù)奇偶性求函數(shù)值.【詳解】因為奇函數(shù),,所以.故答案為:.16、C【解析】先求得函數(shù)的零點為,進而可得的零點滿足,由二次函數(shù)的圖象與性質(zhì)即可得解.【詳解】由題意,函數(shù)單調(diào)遞增,且,所以函數(shù)的零點為,設(shè)的零點為,則,則,由于必過點,故要使其零點在區(qū)間上,則或,即或,所以,故選:C.【點睛】關(guān)鍵點點睛:解決本題的關(guān)鍵是將題目條件轉(zhuǎn)化為函數(shù)零點的范圍,再由二次函數(shù)的圖象與性質(zhì)即可得解.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)或;(2)(-∞,2).【解析】先解出集合A(1)時,求出B,再求和;(2)把轉(zhuǎn)化為,分和進行討論.【詳解】(1)當時,,∴∴或.(2)∵,∴.當時,有,解得:;當時,因為,只需,解得:;綜上:,故實數(shù)的取值范圍(-∞,2).【點睛】(1)集合的交并補運算:①離散型的數(shù)集用韋恩圖;②連續(xù)型的數(shù)集用數(shù)軸;(2)由求參數(shù)的范圍容易漏掉的情況18、(1)①的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;②(2)【解析】(1)①分別在和兩種情況下,結(jié)合二次函數(shù)的單調(diào)性可確定結(jié)果;②根據(jù)①中單調(diào)性可確定最值點,由最值可確定值域;(2)分別在、、三種情況下,結(jié)合二次函數(shù)對稱軸位置與端點值的大小關(guān)系可確定最大值,由此得到.【小問1詳解】當時,;①當時,,在上單調(diào)遞增;當時,,在上單調(diào)遞減,在上單調(diào)遞增;綜上所述:的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為②由①知:在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,,;,,,,,,在上的值域為.【小問2詳解】由題意得:①當,即時,,對稱軸為;當,即時,在上單調(diào)遞增,;當,即時,在上單調(diào)遞增,在上單調(diào)遞減,;②當,即時,若,;若,;當時,,對稱軸,在上單調(diào)遞增,;③當,即時在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,,若,即時,;若,即時,;綜上所述:.19、(1)證明見解析;(2)證明見解析.【解析】(1)連接交于,連接.利用幾何關(guān)系可證得,結(jié)合線面平行的判斷定理則有直線平面(2)利用線面垂直的定義有,結(jié)合可證得平面,則,由幾何關(guān)系有,則平面,利用面面垂直的判斷定理即可證得平面平面試題解析:()連接交于,連接因為矩形的對角線互相平分,所以在矩形中,是中點,所以在中,是中位線,所以,因為平面,平面,所以平面()因為平面,平面,所以;在矩形中有,又,所以平面,因為平面,所以;由已知,三角形是等腰直角三角形,是斜邊的中點,所以,因為,所以平面,因為平面,所以平面平面20、(1)(2)單調(diào)遞增區(qū)間是【解析】(1)根據(jù)公式可求函數(shù)的最小正周期;(2)利用整體法可求函數(shù)的增區(qū)間.【小問1詳解】∵,∴最小正周期【小問2詳解】令,解得,∴的單調(diào)遞增區(qū)間是21、(1)(2)【解析】(1)由奇函數(shù)定義求;(2)代入后結(jié)合對數(shù)恒等式計算【詳解】(1)因為函數(shù)為奇函數(shù),所以恒成立,可得.(2)由(1)可得.所以.【點睛】本題考查函數(shù)的奇偶性,考查對數(shù)恒等式,屬于基礎(chǔ)題22、(1)見解析;(2)【解析】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工作總結(jié)之風(fēng)電實習(xí)總結(jié)
- 工作總結(jié)之動漫公司實習(xí)總結(jié)
- 銀行合規(guī)管理制度實施規(guī)劃
- 《保險代理機構(gòu)規(guī)定》課件
- 《政府透明度完美版》課件
- 《保安培訓(xùn)教材》課件
- 教師師德演講范文(30篇)
- 探究熔化與凝固的特點課件粵教滬版
- 《信用保險培訓(xùn)》課件
- 八年級英語Hasitarrivedyet課件
- 大米投標書0范本
- 涉詐風(fēng)險賬戶審查表
- 公路水運工程施工安全標準化指南 pdf
- 房顫患者的護理
- 2023安全生產(chǎn)責(zé)任制考核制度附考核表
- 煙花爆竹考試真題模擬匯編(共758題)
- 2023年科學(xué)素養(yǎng)大賽考試復(fù)習(xí)題庫(600題)
- 國家開放大學(xué)應(yīng)用寫作(漢語)形考任務(wù)1-6答案(全)
- 學(xué)生家長陪餐制度及營養(yǎng)餐家長陪餐記錄表
- 局部阻力系數(shù)計算表
- 森林計測學(xué)(測樹學(xué))智慧樹知到答案章節(jié)測試2023年浙江農(nóng)林大學(xué)
評論
0/150
提交評論