2024屆廣東省揭陽市第三中學高一數(shù)學第一學期期末考試試題含解析_第1頁
2024屆廣東省揭陽市第三中學高一數(shù)學第一學期期末考試試題含解析_第2頁
2024屆廣東省揭陽市第三中學高一數(shù)學第一學期期末考試試題含解析_第3頁
2024屆廣東省揭陽市第三中學高一數(shù)學第一學期期末考試試題含解析_第4頁
2024屆廣東省揭陽市第三中學高一數(shù)學第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆廣東省揭陽市第三中學高一數(shù)學第一學期期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.與-2022°終邊相同的最小正角是()A.138° B.132°C.58° D.42°2.若函數(shù)f(x)=2x+3x+a在區(qū)間(0,1)A.(-∞,-5)C.(0,5) D.(1,+3.已知則()A. B.C. D.4.已知直線l經(jīng)過兩點,則直線l的斜率是()A. B.C.3 D.5.已知,則=A.2 B.C. D.16.下列根式與分數(shù)指數(shù)冪的互化正確的是()A. B.C. D.7.若、是全集真子集,則下列四個命題①;②;③;④中與命題等價的有A.1個 B.2個C.3個 D.4個8.已知扇形的周長為8,圓心角為2弧度,則該扇形的面積為A B.C. D.9.已知,,且滿足,則的最小值為()A.2 B.3C. D.10.如果,,那么直線不通過A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空題:本大題共6小題,每小題5分,共30分。11.設,,依次是方程,,的根,并且,則,,的大小關系是___12.我國古代數(shù)學名著《九章算術》中相當于給出了已知球的體積V,求其直徑d的一個近似公式.規(guī)定:“一個近似數(shù)與它準確數(shù)的差的絕對值叫這個近似數(shù)的絕對誤差.”如果一個球體的體積為,那么用這個公式所求的直徑d結(jié)果的絕對誤差是___________.(參考數(shù)據(jù):,結(jié)果精確到0.01)13.已知與是兩個不共線的向量,且向量(+λ)與(-3)共線,則λ的值為_____.14.定義在上的奇函數(shù)滿足:對于任意有,若,則的值為__________.15.已知正實數(shù)a,b滿足,則的最小值為___________.16.已知函數(shù),則_________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)當時,解關于的不等式;(2)請判斷函數(shù)是否可能有兩個零點,并說明理由;(3)設,若對任意的,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求實數(shù)的取值范圍.18.如圖所示,在多面體中,四邊形是正方形,,為的中點.(1)求證:平面;(2)求證:平面平面.19.如圖,已知三棱錐中,,,為的中點,為的中點,且為正三角形.(1)求證:平面;(2)求證:平面;(3)若,,求三棱錐的體積.20.已知函數(shù)為奇函數(shù)(1)求實數(shù)的值,判斷函數(shù)的單調(diào)性并用定義證明;(2)求關于的不等式的解集21.函數(shù)的定義域,且滿足對于任意,有(1)求的值(2)判斷的奇偶性,并證明(3)如果,且在上是增函數(shù),求的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)任意角的周期性,將-2022°化為,即可確定最小正角.【詳解】由-2022°,所以與-2022°終邊相同的最小正角是138°.故選:A2、B【解析】利用零點存在性定理知f(0)?f(1)<0,代入解不等式即可得解.【詳解】函數(shù)f(x)=2x+3x+a由零點存在性定理知f(0)?f(1)<0,即1+a5+a<0所以實數(shù)a的取值范圍是(-5,-1)故選:B3、D【解析】先利用同角三角函數(shù)基本關系式求出和,然后利用兩角和的余弦公式展開代入即可求出cos(α+β)【詳解】∵∴∴,∴,∴故選:D4、B【解析】直接由斜率公式計算可得.【詳解】由題意可得直線l的斜率.故選:B.5、D【解析】.故選.6、B【解析】根據(jù)分數(shù)指數(shù)冪的運算性質(zhì)對各選項逐一計算即可求解.【詳解】解:對A:,故選項A錯誤;對B:,故選項B正確;對C:,不能化簡為,故選項C錯誤;對D:因為,所以,故選項D錯誤.故選:B.7、B【解析】直接根據(jù)集合的交集、并集、補集的定義判斷集合間的關系,從而求出結(jié)論【詳解】解:由得Venn圖,①;②;③;④;故和命題等價的有①③,故選:B【點睛】本題主要考查集合的包含關系的判斷及應用,考查集合的基本運算,考查了Venn圖的應用,屬于基礎題8、A【解析】利用弧長公式、扇形的面積計算公式即可得出【詳解】設此扇形半徑為r,扇形弧長為l=2r則2r+2r=8,r=2,∴扇形的面積為r=故選A【點睛】本題考查了弧長公式、扇形的面積計算公式,屬于基礎題9、C【解析】由題意得,根據(jù)基本不等式“1”的代換,計算即可得答案.【詳解】因為,所以,所以,當且僅當時,即,時取等號所以的最小值為.故選:C10、A【解析】截距,因此直線不通過第一象限,選A二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】本題首先可以根據(jù)分別是方程的根得出,再根據(jù)即可得出,然后通過函數(shù)與函數(shù)的性質(zhì)即可得出,最后得出結(jié)果【詳解】因為,,,所以,因為,,所以,,因為函數(shù)與函數(shù)都是單調(diào)遞增函數(shù),前者在后者的上方,所以,綜上所述,【點睛】本題考查方程的根的比較大小,通??赏ㄟ^函數(shù)性質(zhì)或者根的大致取值范圍進行比較,考查函數(shù)思想,考查推理能力,是中檔題12、05【解析】根據(jù)球的體積公式可求得準確直徑,由近似公式可得近似直徑,然后由絕對誤差的定義即可求解.【詳解】解:由題意,,所以,所以直徑d結(jié)果的絕對誤差是,故答案為:0.05.13、-【解析】由向量共線可得+λ=k((-3),計算即可.【詳解】由向量共線可得+λ=k((-3),即+λ=k-3k,∴解得λ=-.故答案為:-14、【解析】由可得,則可化簡,利用可得,由是在上的奇函數(shù)可得,由此【詳解】由題,因為,所以,由,則,則,因為,令,則,所以,因為是在上的奇函數(shù),所以,所以,故答案:0【點睛】本題考查函數(shù)奇偶性、周期性的應用,考查由正切值求正、余弦值15、##【解析】將目標式轉(zhuǎn)化為,應用柯西不等式求取值范圍,進而可得目標式的最小值,注意等號成立條件.【詳解】由題設,,則,又,∴,當且僅當時等號成立,∴,當且僅當時等號成立.∴的最小值為.故答案為:.16、【解析】運用代入法進行求解即可.【詳解】,故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)不可能,理由見解析(3)【解析】(1)結(jié)合對數(shù)函數(shù)的定義域,解對數(shù)不等式求得不等式的解集.(2)由,求得,,但推出矛盾,由此判斷沒有兩個零點.(3)根據(jù)函數(shù)在區(qū)間上的最大值與最小值的差不超過1列不等式,結(jié)合分離常數(shù)法來求得的取值范圍.【小問1詳解】當時,不等式可化為,有,有解得,故不等式,的解集為.【小問2詳解】令,有,有,,,,則,若函數(shù)有兩個零點,記,必有,,且有,此不等式組無解,故函數(shù)不可能有兩個零點.【小問3詳解】當,,時,,函數(shù)單調(diào)遞減,有,有,有有,整理為,由對任意的恒成立,必有解得,又由,可得,由上知實數(shù)的取值范圍為.18、(1)見解析;(2)見解析.【解析】(1)設與交于點,連接易證得四邊形為平行四邊形,所以,進而得證;(2)先證得平面,再證得⊥平面,又,得平面,從而證得平面,即可證得.試題解析:(1)設與交于點,連接.∵分別為中點,∴∴,∴四邊形為平行四邊形,所以,又∴平面∴平面(2)平面⊥平面,又平面平面,又平面,所以平面平面.19、(1)見詳解;(2)見詳解;(3).【解析】(1)先證,可證平面.(2)先證,得,結(jié)合可證得平面.(3)等積轉(zhuǎn)換,由,可求得體積.【詳解】(1)證明:因為為的中點,為的中點,所以是的中位線,.又,,所以.(2)證明:因為為正三角形,為的中點,所以.又,所以.又因為,,所以.因為,所以.又因為,,所以.(3)因為,,所以,即是三棱錐的高.因為,為的中點,為正三角形,所以.由,可得,在直角三角形中,由,可得.于是.所以.【點睛】本題考查空間線面平行與垂直的證明,體積的計算.空間中的平行與垂直的證明過程就是利用相關定義、判定定理和性質(zhì)定理實現(xiàn)線線平行(垂直)、線面平行(垂直)、面面平行(垂直)的轉(zhuǎn)換.求三棱錐的體積常采用等積轉(zhuǎn)換的方法,選擇易求的底面積和高來求體積.20、(1),函數(shù)為R上的增函數(shù),證明見解析(2)【解析】(1)f(x)是R上奇函數(shù),則f(0)=0,即可求出a;設R,且,作差化簡判斷大小關系,根據(jù)單調(diào)性的定義即可判斷單調(diào)性;(2),根據(jù)(1)中單調(diào)性可去掉“f”,將問題轉(zhuǎn)化為解三角不等式.【小問1詳解】∵的定義域是R且是奇函數(shù),∴,即.為R上的增函數(shù),證明如下:任取R,且,則,∴為增函數(shù),,∴∴,∴,即,∴在R上是增函數(shù)【小問2詳解】∵,,又在R上是增函數(shù),,即,,∴原不等式的解集為.21、(1)0;(2)偶函數(shù);(3)見解析【解析】(1)令,代入,即可求出結(jié)果;(2)先求出,再由,即可判斷出結(jié)果;(3)先由,求出,將不等式化為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論