2024屆湖南省普通高中數(shù)學高一上期末綜合測試試題含解析_第1頁
2024屆湖南省普通高中數(shù)學高一上期末綜合測試試題含解析_第2頁
2024屆湖南省普通高中數(shù)學高一上期末綜合測試試題含解析_第3頁
2024屆湖南省普通高中數(shù)學高一上期末綜合測試試題含解析_第4頁
2024屆湖南省普通高中數(shù)學高一上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆湖南省普通高中數(shù)學高一上期末綜合測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.把函數(shù)y=cos2x+1的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),然后向左平移1個單位長度,再向下平移1個單位長度,得到的圖象是()A. B.C. D.2.已知函數(shù)在上的值域為R,則a的取值范圍是A. B.C. D.3.若直線經(jīng)過兩點,,且傾斜角為,則的值為()A.2 B.1C. D.4.如果,,那么直線不通過A.第一象限 B.第二象限C.第三象限 D.第四象限5.已知,現(xiàn)要將兩個數(shù)交換,使,下面語句正確的是A. B.C. D.6.已知扇形的周長是6,面積是2,則扇形的圓心角的弧度數(shù)α是()A.1 B.4C.1或4 D.2或47.若,則下列關(guān)系式一定成立的是()A. B.C. D.8.若函數(shù)的零點所在的區(qū)間為,則實數(shù)a的取值范圍是()A. B.C. D.9.設(shè)的兩根是,則A. B.C. D.10.已知指數(shù)函數(shù)(,且),且,則的取值范圍()A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.已知扇形的弧長為2cm,圓心角為1rad,則扇形的面積為______.12.已知,且,則__13.不等式的解集為,則的取值范圍是_________.14.已知函數(shù)是定義在上的奇函數(shù),當時,,則__________.15.函數(shù)的定義域是______三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.某企業(yè)欲做一個介紹企業(yè)發(fā)展史的銘牌,銘牌的截面形狀是如圖所示的扇形環(huán)面由扇形挖去扇形后構(gòu)成的已知米,米,線段、線段與弧、弧的長度之和為米,圓心角為弧度(1)求關(guān)于的函數(shù)解析式;(2)記銘牌的截面面積為,試問取何值時,的值最大?并求出最大值17.已知函數(shù)(1)求f(x)的最小正周期及單調(diào)遞減區(qū)間;(2)若f(x)在區(qū)間上的最小值為1,求m的最小值18.在①函數(shù);②函數(shù);③函數(shù)的圖象向右平移個單位長度得到的圖象,的圖象關(guān)于原點對稱;這三個條件中任選一個作為已知條件,補充在下面的問題中,然后解答補充完整的題已知______(只需填序號),函數(shù)的圖象相鄰兩條對稱軸之間的距離為.(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)遞減區(qū)間及其在上的最值注:若選擇多個條件分別解答,則按第一個解答計分.19.計算(1)(2)20.化簡求值:(1)已知,求的值;(2)21.已知函數(shù),不等式的解集為(1)求不等式的解集;(2)當在上單調(diào)遞增,求m的取值范圍

參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、A【解析】由題意,的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),即解析式為,向左平移一個單位為,向下平移一個單位為,利用特殊點變?yōu)?選A.點睛:三角函數(shù)的圖象變換,提倡“先平移,后伸縮”,但“先伸縮,后平移”也常出現(xiàn)在題目中,所以也必須熟練掌握.無論是哪種變形,切記每一個變換總是對字母而言.函數(shù)是奇函數(shù);函數(shù)是偶函數(shù);函數(shù)是奇函數(shù);函數(shù)是偶函數(shù).2、A【解析】利用分段函數(shù),通過一次函數(shù)以及指數(shù)函數(shù)判斷求解即可【詳解】解:函數(shù)在上的值域為R,當函數(shù)的值域不可能是R,可得,解得:故選A【點睛】本題考查分段函數(shù)的應用,函數(shù)的最值的求法,屬于基礎(chǔ)題.3、A【解析】直線經(jīng)過兩點,,且傾斜角為,則故答案為A.4、A【解析】截距,因此直線不通過第一象限,選A5、D【解析】通過賦值語句,可得,故選D.6、C【解析】根據(jù)扇形的弧長公式和面積公式,列出方程組,求得的值,即可求解.【詳解】設(shè)扇形所在圓的半徑為,由扇形的周長是6,面積是2,可得,解得或,又由弧長公式,可得,即,當時,可得;當時,可得,故選:C.7、A【解析】判斷函數(shù)的奇偶性以及單調(diào)性,由此可判斷函數(shù)值的大小,即得答案.【詳解】由可知:,為偶函數(shù),又,知在上單調(diào)遞減,在上單調(diào)遞增,故,故選:A.8、C【解析】由函數(shù)的性質(zhì)可得在上是增函數(shù),再由函數(shù)零點存在定理列不等式組,即可求解得a的取值范圍.【詳解】易知函數(shù)在上單調(diào)遞增,且函數(shù)零點所在的區(qū)間為,所以,解得故選:C9、D【解析】詳解】解得或或即,所以故選D10、A【解析】根據(jù)指數(shù)函數(shù)的單調(diào)性可解決此題【詳解】解:由指數(shù)函數(shù)(,且),且根據(jù)指數(shù)函數(shù)單調(diào)性可知所以,故選:A二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、2【解析】首先由扇形的弧長與圓心角求出扇形的半徑,再根據(jù)扇形的面積公式計算可得;【詳解】解:因為扇形的弧長為2cm,圓心角為1rad,所以扇形的半徑cm,所以扇形的面積;故答案為:12、【解析】利用二倍角公式可得,再由同角三角函數(shù)的基本關(guān)系即可求解.【詳解】解:因為,整理可得,解得,或2(舍去),由于,可得,,所以,故答案為:13、[0,1)##0≤k<1【解析】分k=0和k≠0兩種情況進行討論.k≠0時,可看為函數(shù)恒成立,結(jié)合二次函數(shù)的圖像性質(zhì)即可求解.【詳解】①當時,不等式可化為1>0,此時不等式的解集為,符合題意;②當時,要使得不等式的解集為,則滿足,解得;綜上可得,實數(shù)的取值范圍是.故答案:.14、12【解析】由函數(shù)的奇偶性可知,代入函數(shù)解析式即可求出結(jié)果.【詳解】函數(shù)是定義在上的奇函數(shù),,則,.【點睛】本題主要考查函數(shù)的奇偶性,屬于基礎(chǔ)題型.15、【解析】,即定義域為點睛:常見基本初等函數(shù)定義域的基本要求(1)分式函數(shù)中分母不等于零(2)偶次根式函數(shù)的被開方式大于或等于0.(3)一次函數(shù)、二次函數(shù)的定義域均為R.(4)y=x0的定義域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定義域均為R.(6)y=logax(a>0且a≠1)的定義域為(0,+∞)三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1).(2)當時,取最大值.【解析】(1)根據(jù)弧長公式和周長列方程得出關(guān)于的函數(shù)解析式;(2)根據(jù)扇形面積公式求出關(guān)于的函數(shù),從而得出的最大值.【小問1詳解】解:根據(jù)題意,可算得弧,弧,,;【小問2詳解】解:依據(jù)題意,可知,當時,.答:當米時銘牌的面積最大,且最大面積為平方米17、(1).,

(2)【解析】(1)直接利用三角函數(shù)關(guān)系式的恒等變換和正弦型函數(shù)的性質(zhì)的應用求出結(jié)果(2)利用正弦型函數(shù)的性質(zhì)的應用求出結(jié)果【詳解】(1)由題意,函數(shù),==,所以的最小正周期:由,解得即函數(shù)的單調(diào)遞減區(qū)間是

(2)由(1)知,因為,所以要使f(x)在區(qū)間上的最小值為1,即在區(qū)間上的最小值為-1所以,即所以m的最小值為【點睛】本題考查了三角函數(shù)關(guān)系式的變換,正弦型函數(shù)的性質(zhì)的應用,其中解答中熟練應用三角函數(shù)的圖象與性質(zhì),準確運算是解答的關(guān)鍵,著重考查了運算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型18、(1)條件選擇見解析,(2)單調(diào)遞減區(qū)間為,最小值為,最大值為2【解析】(1)選條件①:利用同角三角函數(shù)的關(guān)系式以及兩角和的正弦公式和倍角公式,將化為只含一個三角函數(shù)形式,根據(jù)最小正周期求得,即可得答案;選條件②:利用兩角和的正弦公式以及倍角公式,將化為只含一個三角函數(shù)形式,根據(jù)最小正周期求得,即可得答案;選條件③,先求得,利用三角函數(shù)圖象的平移變換規(guī)律,可得到g(x)的表達式,根據(jù)其性質(zhì)求得,即得答案;(2)根據(jù)正弦函數(shù)的單調(diào)性即可求得答案,再由,確定,根據(jù)三角函數(shù)性質(zhì)即可求得答案.【小問1詳解】選條件①:法一:又由函數(shù)的圖象相鄰兩條對稱軸之間的距離為,可知函數(shù)最小正周期,∴,∴選條件②:,又最小正周期,∴,∴選條件③:由題意可知,最小正周期,∴,∴,∴,又函數(shù)的圖象關(guān)于原點對稱,∴,∵,∴∴【小問2詳解】由(1)知,由,解得,∴函數(shù)單調(diào)遞減區(qū)間為由,從而,故在區(qū)間上的最小值為,最大值為2.19、(1)6(2)【解析】(1)將根式轉(zhuǎn)化為分數(shù)指數(shù)冪,然后根據(jù)冪的運算性質(zhì)即可化簡求值;(2)利用對數(shù)的運算性質(zhì)即可求解.【小問1詳解】解:;【小問2詳解】解:.20、(1)(2)【解析】(1)先用誘導公式化簡,再用同角三角函數(shù)的平方關(guān)系求解;(2)先用誘

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論