




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆山東省濟(jì)寧市名校中考試題猜想數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,甲圓柱型容器的底面積為30cm2,高為8cm,乙圓柱型容器底面積為xcm2,若將甲容器裝滿水,然后再將甲容器里的水全部倒入乙容器中(乙容器無水溢出),則乙容器水面高度y(cm)與x(cm2)之間的大致圖象是()A. B. C. D.2.如圖,將周長為8的△ABC沿BC方向平移1個單位長度得到,則四邊形的周長為()A.8 B.10 C.12 D.163.春季是傳染病多發(fā)的季節(jié),積極預(yù)防傳染病是學(xué)校高度重視的一項工作,為此,某校對學(xué)生宿舍采取噴灑藥物進(jìn)行消毒.在對某宿舍進(jìn)行消毒的過程中,先經(jīng)過的集中藥物噴灑,再封閉宿舍,然后打開門窗進(jìn)行通風(fēng),室內(nèi)每立方米空氣中含藥量與藥物在空氣中的持續(xù)時間之間的函數(shù)關(guān)系,在打開門窗通風(fēng)前分別滿足兩個一次函數(shù),在通風(fēng)后又成反比例,如圖所示.下面四個選項中錯誤的是()A.經(jīng)過集中噴灑藥物,室內(nèi)空氣中的含藥量最高達(dá)到B.室內(nèi)空氣中的含藥量不低于的持續(xù)時間達(dá)到了C.當(dāng)室內(nèi)空氣中的含藥量不低于且持續(xù)時間不低于35分鐘,才能有效殺滅某種傳染病毒.此次消毒完全有效D.當(dāng)室內(nèi)空氣中的含藥量低于時,對人體才是安全的,所以從室內(nèi)空氣中的含藥量達(dá)到開始,需經(jīng)過后,學(xué)生才能進(jìn)入室內(nèi)4.如圖,在△ABC中,∠ACB=90°,沿CD折疊△CBD,使點B恰好落在AC邊上的點E處.若∠A=24°,則∠BDC的度數(shù)為()A.42° B.66° C.69° D.77°5.下圖是某幾何體的三視圖,則這個幾何體是()A.棱柱 B.圓柱 C.棱錐 D.圓錐6.如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點F,則∠BFC為()A.75° B.60° C.55° D.45°7.如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OE?OP;③S△AOD=S四邊形OECF;④當(dāng)BP=1時,tan∠OAE=,其中正確結(jié)論的個數(shù)是(
)A.1 B.2 C.3 D.48.通州區(qū)大運河森林公園占地面積10700畝,是北京規(guī)模最大的濱河森林公園,將10700用科學(xué)記數(shù)法表示為()A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×1049.如圖,先鋒村準(zhǔn)備在坡角為的山坡上栽樹,要求相鄰兩樹之間的水平距離為米,那么這兩樹在坡面上的距離為()A. B. C.5cosα D.10.的值為()A. B.- C.9 D.-9二、填空題(共7小題,每小題3分,滿分21分)11.如圖,小強(qiáng)和小華共同站在路燈下,小強(qiáng)的身高EF=1.8m,小華的身高M(jìn)N=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是___.12.平面直角坐標(biāo)系中一點P(m﹣3,1﹣2m)在第三象限,則m的取值范圍是_____.13.一個布袋里裝有10個只有顏色不同的球,這10個球中有m個紅球,從布袋中摸出一個球,記下顏色后放回,攪勻,再摸出一個球,通過大量重復(fù)試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在0.3左右,則m的值約為__________.14.如圖,平面直角坐標(biāo)系中,矩形OABC的頂點A(﹣6,0),C(0,2).將矩形OABC繞點O順時針方向旋轉(zhuǎn),使點A恰好落在OB上的點A1處,則點B的對應(yīng)點B1的坐標(biāo)為_____.15.如圖,將△ABC繞點A逆時針旋轉(zhuǎn)100°,得到△ADE.若點D在線段BC的延長線上,則的大小為________.16.分解因式:m3–m=_____.17.已知關(guān)于x的一元二次方程(k﹣5)x2﹣2x+2=0有實根,則k的取值范圍為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D,E是AB延長線上一點,CE交⊙O于點F,連接OC、AC.(1)求證:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度數(shù);②若⊙O的半徑為2,求線段EF的長.19.(5分)某公司10名銷售員,去年完成的銷售額情況如表:銷售額(單位:萬元)34567810銷售員人數(shù)(單位:人)1321111(1)求銷售額的平均數(shù)、眾數(shù)、中位數(shù);(2)今年公司為了調(diào)動員工積極性,提高年銷售額,準(zhǔn)備采取超額有獎的措施,請根據(jù)(1)的結(jié)果,通過比較,合理確定今年每個銷售員統(tǒng)一的銷售額標(biāo)準(zhǔn)是多少萬元?20.(8分)我們知道中,如果,,那么當(dāng)時,的面積最大為6;(1)若四邊形中,,且,直接寫出滿足什么位置關(guān)系時四邊形面積最大?并直接寫出最大面積.(2)已知四邊形中,,求為多少時,四邊形面積最大?并求出最大面積是多少?21.(10分)計算:27﹣(﹣2)0+|1﹣3|+2cos30°.22.(10分)已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.求證:BE=DF;連接AC交EF于點O,延長OC至點M,使OM=OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.23.(12分)如圖,AB是⊙O的一條弦,E是AB的中點,過點E作EC⊥OA于點C,過點B作⊙O的切線交CE的延長線于點D.(1)求證:DB=DE;(2)若AB=12,BD=5,求⊙O的半徑.24.(14分)如圖,在航線l的兩側(cè)分別有觀測點A和B,點A到航線的距離為2km,點B位于點A北偏東60°方向且與A相距10km.現(xiàn)有一艘輪船從位于點B南偏西76°方向的C處,正沿該航線自西向東航行,5分鐘后該輪船行至點A的正北方向的D處.(1)求觀測點B到航線的距離;(2)求該輪船航行的速度(結(jié)果精確到0.1km/h).(參考數(shù)據(jù):≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】
根據(jù)題意可以寫出y關(guān)于x的函數(shù)關(guān)系式,然后令x=40求出相應(yīng)的y值,即可解答本題.【題目詳解】解:由題意可得,y==,當(dāng)x=40時,y=6,故選C.【題目點撥】本題考查了反比例函數(shù)的圖象,根據(jù)題意列出函數(shù)解析式是解決此題的關(guān)鍵.2、B【解題分析】根據(jù)平移的基本性質(zhì),得出四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根據(jù)題意,將周長為8個單位的△ABC沿邊BC向右平移1個單位得到△DEF,
∴AD=1,BF=BC+CF=BC+1,DF=AC;
又∵AB+BC+AC=8,
∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.
故選C.“點睛”本題考查平移的基本性質(zhì):①平移不改變圖形的形狀和大??;②經(jīng)過平移,對應(yīng)點所連的線段平行且相等,對應(yīng)線段平行且相等,對應(yīng)角相等.得到CF=AD,DF=AC是解題的關(guān)鍵.3、C【解題分析】
利用圖中信息一一判斷即可.【題目詳解】解:A、正確.不符合題意.B、由題意x=4時,y=8,∴室內(nèi)空氣中的含藥量不低于8mg/m3的持續(xù)時間達(dá)到了11min,正確,不符合題意;C、y=5時,x=2.5或24,24-2.5=21.5<35,故本選項錯誤,符合題意;D、正確.不符合題意,故選C.【題目點撥】本題考查反比例函數(shù)的應(yīng)用、一次函數(shù)的應(yīng)用等知識,解題的關(guān)鍵是讀懂圖象信息,屬于中考??碱}型.4、C【解題分析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折疊的性質(zhì)可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故選C.5、D【解題分析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【題目詳解】由俯視圖易得幾何體的底面為圓,還有表示錐頂?shù)膱A心,符合題意的只有圓錐.故選D.【題目點撥】本題考查由三視圖確定幾何體的形狀,主要考查學(xué)生空間想象能力以及對立體圖形的認(rèn)識.6、B【解題分析】
由正方形的性質(zhì)和等邊三角形的性質(zhì)得出∠BAE=150°,AB=AE,由等腰三角形的性質(zhì)和內(nèi)角和定理得出∠ABE=∠AEB=15°,再運用三角形的外角性質(zhì)即可得出結(jié)果.【題目詳解】解:∵四邊形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等邊三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故選:B.【題目點撥】本題考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的判定與性質(zhì)、三角形的外角性質(zhì);熟練掌握正方形和等邊三角形的性質(zhì),并能進(jìn)行推理計算是解決問題的關(guān)鍵.7、C【解題分析】∵四邊形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP與△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正確;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD?OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE?OP;故②錯誤;在△CQF與△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF與△DCE中,,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四邊形OECF;故③正確;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正確,故選C.點睛:本題考查了相似三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),正方形的性質(zhì),三角函數(shù)的定義,熟練掌握全等三角形的判定和性質(zhì)是解題的關(guān)鍵.8、D【解題分析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【題目詳解】解:10700=1.07×104,
故選:D.【題目點撥】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.9、D【解題分析】
利用所給的角的余弦值求解即可.【題目詳解】∵BC=5米,∠CBA=∠α,∴AB==.故選D.【題目點撥】本題主要考查學(xué)生對坡度、坡角的理解及運用.10、A【解題分析】【分析】根據(jù)絕對值的意義進(jìn)行求解即可得.【題目詳解】表示的是的絕對值,數(shù)軸上表示的點到原點的距離是,即的絕對值是,所以的值為,故選A.【題目點撥】本題考查了絕對值的意義,熟練掌握絕對值的意義是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、4m【解題分析】
設(shè)路燈的高度為x(m),根據(jù)題意可得△BEF∽△BAD,再利用相似三角形的對應(yīng)邊正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因為兩人相距4.7m,可得到關(guān)于x的一元一次方程,然后求解方程即可.【題目詳解】設(shè)路燈的高度為x(m),∵EF∥AD,∴△BEF∽△BAD,∴EFAD即1.8x解得:DF=x﹣1.8,∵M(jìn)N∥AD,∴△CMN∽△CAD,∴MNAD即1.5x解得:DN=x﹣1.5,∵兩人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路燈AD的高度是4m.12、0.5<m<3【解題分析】
根據(jù)第三象限內(nèi)點的橫坐標(biāo)與縱坐標(biāo)都是負(fù)數(shù)列式不等式組,然后求解即可.【題目詳解】∵點P(m?3,1?2m)在第三象限,∴,解得:0.5<m<3.故答案為:0.5<m<3.【題目點撥】本題考查了解一元二次方程組與象限及點的坐標(biāo)的有關(guān)性質(zhì),解題的關(guān)鍵是熟練的掌握解一元二次方程組與象限及點的坐標(biāo)的有關(guān)性質(zhì).13、3【解題分析】
在同樣條件下,大量重復(fù)實驗時,隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關(guān)系入手,列出等式解答.【題目詳解】解:根據(jù)題意得,=0.3,解得m=3.故答案為:3.【題目點撥】本題考查隨機(jī)事件概率的意義,關(guān)鍵是要知道在同樣條件下,大量重復(fù)實驗時,隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定在概率附近.14、(-2,6)【解題分析】分析:連接OB1,作B1H⊥OA于H,證明△AOB≌△HB1O,得到B1H=OA=6,OH=AB=2,得到答案.詳解:連接OB1,作B1H⊥OA于H,由題意得,OA=6,AB=OC-2,則tan∠BOA=,∴∠BOA=30°,∴∠OBA=60°,由旋轉(zhuǎn)的性質(zhì)可知,∠B1OB=∠BOA=30°,∴∠B1OH=60°,在△AOB和△HB1O,,∴△AOB≌△HB1O,∴B1H=OA=6,OH=AB=2,∴點B1的坐標(biāo)為(-2,6),故答案為(-2,6).點睛:本題考查的是矩形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì),掌握矩形的性質(zhì)、全等三角形的判定和性質(zhì)定理是解題的關(guān)鍵.15、40°【解題分析】
根據(jù)旋轉(zhuǎn)的性質(zhì)可得出AB=AD、∠BAD=100°,再根據(jù)等腰三角形的性質(zhì)可求出∠B的度數(shù),此題得解.【題目詳解】根據(jù)旋轉(zhuǎn)的性質(zhì),可得:AB=AD,∠BAD=100°,∴∠B=∠ADB=×(180°?100°)=40°.故填:40°.【題目點撥】本題考查了旋轉(zhuǎn)的性質(zhì)以及等腰三角形的性質(zhì),根據(jù)旋轉(zhuǎn)的性質(zhì)結(jié)合等腰三角形的性質(zhì)求出∠B的度數(shù)是解題的關(guān)鍵.16、m(m+1)(m-1)【解題分析】
根據(jù)因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解),可以先提公因式,再利用平方差完成因式分解【題目詳解】解:故答案為:m(m+1)(m-1).【題目點撥】本題考查因式分解,掌握因式分解的技巧是解題關(guān)鍵.17、【解題分析】
若一元二次方程有實根,則根的判別式△=b2-4ac≥0,且k-1≠0,建立關(guān)于k的不等式組,求出k的取值范圍.【題目詳解】解:∵方程有兩個實數(shù)根,∴△=b2-4ac=(-2)2-4×2×(k-1)=44-8k≥0,且k-1≠0,解得:k≤且k≠1,故答案為k≤且k≠1.【題目點撥】此題考查根的判別式問題,總結(jié):一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)①∠OCE=45°;②EF=-2.【解題分析】【試題分析】(1)根據(jù)直線與⊙O相切的性質(zhì),得OC⊥CD.又因為AD⊥CD,根據(jù)同一平面內(nèi),垂直于同一條直線的兩條直線也平行,得:AD//OC.∠DAC=∠OCA.又因為OC=OA,根據(jù)等邊對等角,得∠OAC=∠OCA.等量代換得:∠DAC=∠OAC.根據(jù)角平分線的定義得:AC平分∠DAO.(2)①因為AD//OC,∠DAO=105°,根據(jù)兩直線平行,同位角相等得,∠EOC=∠DAO=105°,在中,∠E=30°,利用內(nèi)角和定理,得:∠OCE=45°.②作OG⊥CE于點G,根據(jù)垂徑定理可得FG=CG,因為OC=,∠OCE=45°.等腰直角三角形的斜邊是腰長的倍,得CG=OG=2.FG=2.在Rt△OGE中,∠E=30°,得GE=,則EF=GE-FG=-2.【試題解析】(1)∵直線與⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于點G,可得FG=CG∵OC=,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=.∴EF=GE-FG=-2.【方法點睛】本題目是一道圓的綜合題目,涉及到圓的切線的性質(zhì),平行線的性質(zhì)及判定,三角形內(nèi)角和,垂徑定理,難度為中等.19、(1)平均數(shù)5.6(萬元);眾數(shù)是4(萬元);中位數(shù)是5(萬元);(2)今年每個銷售人員統(tǒng)一的銷售標(biāo)準(zhǔn)應(yīng)是5萬元.【解題分析】
(1)根據(jù)平均數(shù)公式求得平均數(shù),根據(jù)次數(shù)出現(xiàn)最多的數(shù)確定眾數(shù),按從小到大順序排列好后求得中位數(shù).
(2)根據(jù)平均數(shù),中位數(shù),眾數(shù)的意義回答.【題目詳解】解:(1)平均數(shù)=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(萬元);出現(xiàn)次數(shù)最多的是4萬元,所以眾數(shù)是4(萬元);因為第五,第六個數(shù)均是5萬元,所以中位數(shù)是5(萬元).(2)今年每個銷售人員統(tǒng)一的銷售標(biāo)準(zhǔn)應(yīng)是5萬元.理由如下:若規(guī)定平均數(shù)5.6萬元為標(biāo)準(zhǔn),則多數(shù)人無法或不可能超額完成,會挫傷員工的積極性;若規(guī)定眾數(shù)4萬元為標(biāo)準(zhǔn),則大多數(shù)人不必努力就可以超額完成,不利于提高年銷售額;若規(guī)定中位數(shù)5萬元為標(biāo)準(zhǔn),則大多數(shù)人能完成或超額完成,少數(shù)人經(jīng)過努力也能完成.因此把5萬元定為標(biāo)準(zhǔn)比較合理.【題目點撥】本題考查的知識點是眾數(shù)、平均數(shù)以及中位數(shù),解題的關(guān)鍵是熟練的掌握眾數(shù)、平均數(shù)以及中位數(shù).20、(1)當(dāng),時有最大值1;(2)當(dāng)時,面積有最大值32.【解題分析】
(1)由題意當(dāng)AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,由此即可解決問題.
(2)設(shè)BD=x,由題意:當(dāng)AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.【題目詳解】(1)由題意當(dāng)AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,
最大面積為×6×(16-6)=1.故當(dāng),時有最大值1;(2)當(dāng),時有最大值,設(shè),由題意:當(dāng)AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,∴拋物線開口向下∴當(dāng)時,面積有最大值32.【題目點撥】本題考查三角形的面積,二次函數(shù)的應(yīng)用等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建二次函數(shù)解決問題.21、53【解題分析】
(1)原式利用二次根式的性質(zhì),零指數(shù)冪法則,絕對值的代數(shù)意義,以及特殊角的三角函數(shù)值進(jìn)行化簡即可得到結(jié)果.【題目詳解】原式=33=33=53【題目點撥】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.22、(1)證明見解析;(2)四邊形AEMF是菱形,證明見解析.【解題分析】
(1)求簡單的線段相等,可證線段所在的三角形全等,即證△ABE≌△ADF;(2)由于四邊形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;聯(lián)立(1)的結(jié)論,可證得EC=CF,根據(jù)等腰三角形三線合一的性質(zhì)可證得OC(即AM)垂直平分EF;已知OA=OM,則EF、AM互相平分,再根據(jù)一組鄰邊相等的平行四邊形是菱形,即可判定四邊形AEMF是菱形.【題目詳解】(1)證明:∵四邊形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;(2)四邊形AEMF是菱形,理由為:證明:∵四邊形ABCD是正方形,∴∠BCA=∠DCA=45°(正方形的對角線平分一組對角),BC=DC(正方形四條邊相等),∵BE=DF(已證),∴BC-BE=DC-DF(等式的性質(zhì)),即CE=CF,在△COE和△COF中,,∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四邊形AEMF是平行四邊形(對角線互相平分的四邊形是平行四邊形),∵AE=AF,∴平行四邊形AEMF是菱形.23、(1)證明見解析;(2)【解題分析】試題分析:(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖南三一工業(yè)職業(yè)技術(shù)學(xué)院《普通物理二》2023-2024學(xué)年第二學(xué)期期末試卷
- 漳州科技職業(yè)學(xué)院《男裝設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷
- 攀枝花學(xué)院《工程圖學(xué)與計算機(jī)繪圖甲》2023-2024學(xué)年第二學(xué)期期末試卷
- 15《搭船的鳥》教學(xué)設(shè)計-2024-2025學(xué)年三年級上冊語文統(tǒng)編版
- 金山職業(yè)技術(shù)學(xué)院《外貿(mào)專業(yè)英語一》2023-2024學(xué)年第二學(xué)期期末試卷
- 信陽師范大學(xué)《工程實訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 銅仁幼兒師范高等??茖W(xué)?!度肆Y源管理沙盤模擬》2023-2024學(xué)年第二學(xué)期期末試卷
- 船舶運力合同范本
- 第 19課《燈泡亮了》教學(xué)設(shè)計-2023-2024學(xué)年青島版科學(xué)四年級下冊
- 《7 比較測量紙帶和尺子》教學(xué)設(shè)計-2023-2024學(xué)年一年級上冊科學(xué)教科版
- 汽車行業(yè)維修記錄管理制度
- 公務(wù)員2022年國考申論試題(行政執(zhí)法卷)及參考答案
- IQC檢驗作業(yè)指導(dǎo)書
- 城市自來水廠課程設(shè)計
- 重慶市2024年小升初語文模擬考試試卷(含答案)
- 2024智慧城市數(shù)據(jù)采集標(biāo)準(zhǔn)規(guī)范
- 【人教版】《勞動教育》七上 勞動項目一 疏通廚房下水管道 課件
- 2024特斯拉的自動駕駛系統(tǒng)FSD發(fā)展歷程、技術(shù)原理及未來展望分析報告
- 2024-2030年中國銀行人工智能行業(yè)市場深度調(diào)研及發(fā)展趨勢與投資前景研究報告
- 五屆全國智能制造應(yīng)用技術(shù)技能大賽數(shù)字孿生應(yīng)用技術(shù)員(智能制造控制技術(shù)方向)賽項實操樣題
- 中國銀行中銀數(shù)字服務(wù)(南寧)有限公司招聘筆試真題2023
評論
0/150
提交評論