版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆四川省資陽市高中(數(shù)學(xué)高一上期末達(dá)標(biāo)檢測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知指數(shù)函數(shù)的圖象過點(diǎn),則()A. B.C.2 D.42.設(shè),,,則()A. B.C. D.3.下列關(guān)于函數(shù),的單調(diào)性敘述正確的是()A.在上單調(diào)遞增,在上單調(diào)遞減B.在上單調(diào)遞增,在上單調(diào)遞減C.在及上單調(diào)遞增,在上單調(diào)遞減D.在上單調(diào)遞增,在及上單調(diào)遞減4.設(shè)是周期為的奇函數(shù),當(dāng)時,,則A. B.C. D.5.基本再生數(shù)與世代間隔是流行病學(xué)基本參數(shù),基本再生數(shù)是指一個感染者傳染的平均人數(shù),世代間隔指兩代間傳染所需的平均時間,在型病毒疫情初始階段,可以用指數(shù)函數(shù)模型描述累計感染病例數(shù)隨時間(單位:天)的變化規(guī)律,指數(shù)增長率與、近似滿足,有學(xué)者基于已有數(shù)據(jù)估計出,.據(jù)此,在型病毒疫情初始階段,累計感染病例數(shù)增加至的4倍,至少需要()(參考數(shù)據(jù):)A.6天 B.7天C.8天 D.9天6.下列四個函數(shù),最小正周期是的是()A. B.C. D.7.設(shè),且,下列選項中一定正確的是()A. B.C. D.8.已知,則函數(shù)與函數(shù)的圖象可能是()A. B.C. D.9.已知α,β是兩個不同的平面,m,n是兩條不同的直線,給出下列命題:①若m∥α,m∥β,則α∥β②若m?α,n?α,m∥β,n∥β,則α∥β;③m?α,n?β,m、n是異面直線,那么n與α相交;④若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β其中正確的命題是()A.①② B.②③C.③④ D.④10.函數(shù)部分圖象大致為()A. B.C. D.11.設(shè)函數(shù)y=,當(dāng)x>0時,則y()A.有最大值4 B.有最小值4C有最小值8 D.有最大值812.已知函數(shù)f(x)=|lnx|-1,g(x)=-x2+2x+3,用min{m,n}表示m,n中的最小值.設(shè)函數(shù)h(x)=min{f(x),g(x)},則函數(shù)h(x)的零點(diǎn)個數(shù)為()A.1 B.2C.3 D.4二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.如圖,已知六棱錐P﹣ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=AB,則下列結(jié)論正確的是_____.(填序號)①PB⊥AD;②平面PAB⊥平面PBC;③直線BC∥平面PAE;④sin∠PDA14.已知函數(shù),則______15.已知平面向量,,若,則______16.將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)壓縮為原來的后,再將圖象向左平移個單位長度,得到函數(shù)的圖象,則的單調(diào)遞增區(qū)間為____________三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知對數(shù)函數(shù).(1)若函數(shù),討論函數(shù)的單調(diào)性;(2)對于(1)中的函數(shù),若,不等式的解集非空,求實數(shù)的取值范圍.18.如圖,摩天輪的半徑為,點(diǎn)距地面的高度為,摩天輪按逆時針方向作勻速轉(zhuǎn)動,且每轉(zhuǎn)一圈,摩天輪上點(diǎn)的起始位置在最高點(diǎn).(Ⅰ)試確定點(diǎn)距離地面的高度(單位:)關(guān)于轉(zhuǎn)動時間(單位:)的函數(shù)關(guān)系式;(Ⅱ)摩天輪轉(zhuǎn)動一圈內(nèi),有多長時間點(diǎn)距離地面超過?19.對于函數(shù),若在其定義域內(nèi)存在實數(shù),,使得成立,則稱是“躍點(diǎn)”函數(shù),并稱是函數(shù)的1個“躍點(diǎn)”(1)求證:函數(shù)在上是“1躍點(diǎn)”函數(shù);(2)若函數(shù)在上存在2個“1躍點(diǎn)”,求實數(shù)的取值范圍;(3)是否同時存在實數(shù)和正整數(shù)使得函數(shù)在上有2022個“躍點(diǎn)”?若存在,請求出和滿足的條件;若不存在,請說明理由20.(1)若正數(shù)a,b滿足,求的最小值,并求出對應(yīng)的a,b的值;(2)若正數(shù)x,y滿足,求的取值范圍21.化簡求值:(1);(2).22.已知函數(shù),該函數(shù)圖象一條對稱軸與其相鄰的一個對稱中心的距離為(1)求函數(shù)的對稱軸和對稱中心;(2)求在上的單調(diào)遞增區(qū)間
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、C【解析】由指數(shù)函數(shù)過點(diǎn)代入求出,計算對數(shù)值即可.【詳解】因為指數(shù)函數(shù)的圖象過點(diǎn),所以,即,所以,故選:C2、A【解析】先計算得到,,再利用展開得到答案.詳解】,,;,;故選:【點(diǎn)睛】本題考查了三角函數(shù)值的計算,變換是解題的關(guān)鍵.3、C【解析】先求出函數(shù)的一般性單調(diào)區(qū)間,再結(jié)合選項判斷即可.【詳解】的單調(diào)增區(qū)間滿足:,即,所以其單調(diào)增區(qū)間為:,同理可得其單調(diào)減區(qū)間為:.由于,令中的,有,,所以在上的增區(qū)間為及.令中的,有,所以在上的減區(qū)間為.故選:C4、A【解析】根據(jù)f(x)是奇函數(shù)可得f(﹣)=﹣f(),再根據(jù)f(x)是周期函數(shù),周期為2,可得f()=f(﹣4)=f(),再代入0≤x≤1時,f(x)=2x(1﹣x),進(jìn)行求解.【詳解】∵設(shè)f(x)是周期為2的奇函數(shù),∴f(﹣x)=﹣f(x),∵f(﹣)=﹣f(),∵T=2,∴f()=f(﹣4)=f(),∵當(dāng)0≤x≤1時,f(x)=2x(1﹣x),∴f()=2×(1﹣)=,∴f(﹣)=﹣f()=﹣f()=﹣,故選A【點(diǎn)睛】此題主要考查周期函數(shù)和奇函數(shù)的性質(zhì)及其應(yīng)用,注意所求值需要利用周期進(jìn)行調(diào)節(jié),此題是一道基礎(chǔ)題.5、B【解析】根據(jù)題意將給出的數(shù)據(jù)代入公式即可計算出結(jié)果【詳解】因為,,,所以可以得到,由題意可知,所以至少需要7天,累計感染病例數(shù)增加至的4倍故選:B6、C【解析】依次計算周期即可.【詳解】A選項:,錯誤;B選項:,錯誤;C選項:,正確;D選項:,錯誤.故選:C.7、D【解析】舉出反例即可判斷AC,根據(jù)不等式的性質(zhì)即可判斷B,利用作差法即可判斷D.【詳解】解:對于A,當(dāng)時,不成立,故A錯誤;對于B,若,則,故B錯誤;對于C,當(dāng)時,,故C錯誤;對于D,,因為,所以,,所以,即,故D正確.故選:D.8、D【解析】根據(jù)對數(shù)關(guān)系得,所以函數(shù)與函數(shù)的單調(diào)性相同即可得到選項.【詳解】,所以,,不為1的情況下:,函數(shù)與函數(shù)的單調(diào)性相同,ABC均不滿足,D滿足題意.故選:D【點(diǎn)睛】此題考查函數(shù)圖象的辨析,根據(jù)已知條件找出等量關(guān)系或不等關(guān)系,分析出函數(shù)的單調(diào)性得解.9、D【解析】利用平面與平面垂直和平行的判定和性質(zhì),直線與平面平行的判斷,對選項逐一判斷即可【詳解】①若m∥α,m∥β,則α∥β或α與β相交,錯誤命題;②若m?α,n?α,m∥β,n∥β,則α∥β或α與β相交.錯誤的命題;③m?α,n?β,m、n是異面直線,那么n與α相交,也可能n∥α,是錯誤命題;④若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β.是正確的命題故選D【點(diǎn)睛】本題考查平面與平面的位置關(guān)系,直線與平面的位置關(guān)系,考查空間想象力,屬于中檔題.10、A【解析】根據(jù)函數(shù)的解析式可判斷函數(shù)為奇函數(shù),再根據(jù)函數(shù)的零點(diǎn)個數(shù)可得正確的選項.【詳解】因為,所以為奇函數(shù),圖象關(guān)于原點(diǎn)對稱,故排除B;令,即,解得,即只有一個零點(diǎn),故排除C,D故選:A11、B【解析】由均值不等式可得答案.【詳解】由,當(dāng)且僅當(dāng),即時等號成立.當(dāng)時,函數(shù)的函數(shù)值趨于所以函數(shù)無最大值,有最小值4故選:B12、C【解析】畫圖可知四個零點(diǎn)分別為-1和3,和e,但注意到f(x)的定義域為x>0,故選C.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、④【解析】由題意,分別根據(jù)線面位置關(guān)系的判定定理和性質(zhì)定理,逐項判定,即可得到答案.【詳解】∵PA⊥平面ABC,如果PB⊥AD,可得AD⊥AB,但是AD與AB成60°,∴①不成立,過A作AG⊥PB于G,如果平面PAB⊥平面PBC,可得AG⊥BC,∵PA⊥BC,∴BC⊥平面PAB,∴BC⊥AB,矛盾,所以②不正確;BC與AE是相交直線,所以BC一定不與平面PAE平行,所以③不正確;在Rt△PAD中,由于AD=2AB=2PA,∴sin∠PDA,所以④正確;故答案為:④【點(diǎn)睛】本題考查線面位置關(guān)系判定與證明,考查線線角,屬于基礎(chǔ)題.熟練掌握空間中線面位置關(guān)系的定義、判定、幾何特征是解答的關(guān)鍵,其中垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.14、【解析】由分段函數(shù)解析式先求,再求.【詳解】由已知可得,故.故答案為:2.15、【解析】求出,根據(jù),即,進(jìn)行數(shù)量積的坐標(biāo)運(yùn)算,列出方程,即可求解【詳解】由題意知,平面向量,,則;因為,所以,解得故答案為【點(diǎn)睛】本題主要考查了向量的坐標(biāo)運(yùn)算,以及向量的數(shù)量積的應(yīng)用,其中解答中根據(jù)平面向量垂直的條件,得到關(guān)于的方程是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.16、【解析】根據(jù)函數(shù)圖象的變換,求出的解析式,結(jié)合函數(shù)的單調(diào)性進(jìn)行求解即可.【詳解】由數(shù)圖象上所有點(diǎn)的橫坐標(biāo)壓縮為原來的后,得到,再將圖象向左平移個單位長度,得到函數(shù)的圖象,即令,函數(shù)的單調(diào)遞增區(qū)間是由,得,的單調(diào)遞增區(qū)間為.故答案為:三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)詳見解析;(2).【解析】(1)由對數(shù)函數(shù)的定義,得到的值,進(jìn)而得到函數(shù)的解析式,再根據(jù)復(fù)合函數(shù)的單調(diào)性,即可求解函數(shù)的單調(diào)性.(2)不等式的解集非空,得,利用函數(shù)的單調(diào)性,求得函數(shù)的最小值,即可求得實數(shù)的取值范圍.【詳解】(1)由題中可知:,解得:,所以函數(shù)的解析式,∵,∴,∴,即的定義域為,由于,令則:由對稱軸可知,在單調(diào)遞增,在單調(diào)遞減;又因為在單調(diào)遞增,故單調(diào)遞增區(qū)間,單調(diào)遞減區(qū)間為.(2)不等式的解集非空,所以,由(1)知,當(dāng)時,函數(shù)單調(diào)遞增區(qū)間,單調(diào)遞減區(qū)間為,又,所以,所以,,所以實數(shù)的取值范圍.18、(1)(2)【解析】(1)由圖形知,以點(diǎn)O為原點(diǎn),所在直線為y軸,過O且與垂直的向右的方向為x軸建立坐標(biāo)系,得出點(diǎn)P的縱坐標(biāo),由起始位置得即可得出在時刻tmin時P點(diǎn)距離地面的高度的函數(shù);(2)由(1)中的函數(shù),令函數(shù)值大于70解不等式即可得出P點(diǎn)距離地面超過70m的時間【詳解】(1)建立如圖所示的平面直角坐標(biāo)系,設(shè)是以軸正半軸為始邊,(表示點(diǎn)的起始位置)為終邊的角,由題點(diǎn)的起始位置在最高點(diǎn)知,,又由題知在內(nèi)轉(zhuǎn)過的角為,即,所以以軸正半軸為始邊,為終邊的角為,即點(diǎn)縱坐標(biāo),所以點(diǎn)距離地面的高度關(guān)于旋轉(zhuǎn)時間的函數(shù)關(guān)系式是,化簡得.(2)當(dāng)時,解得,又,所以符合題意的時間段為或,即在摩天輪轉(zhuǎn)動一圈內(nèi),有點(diǎn)距離地面超過.【點(diǎn)睛】本題考查已知三角函數(shù)模型的應(yīng)用問題,解答本題的關(guān)鍵是建立起符合條件的坐標(biāo)系,得出相應(yīng)的函數(shù)的模型,作出正確的示意圖,然后再由三角形中的相關(guān)知識進(jìn)行運(yùn)算,解三角形的應(yīng)用一般是求距離(長度問題,高度問題等),解題時要注意綜合利用所學(xué)的知識與題設(shè)中的條件,求解三角形的邊與角,本題屬于中檔題19、(1)證明見詳解(2)(3)存在,或或【解析】(1)將要證明問題轉(zhuǎn)化為方程在上有解,構(gòu)造函數(shù)轉(zhuǎn)化為函數(shù)零點(diǎn)問題,結(jié)合零點(diǎn)存在性定理可證;(2)原問題等價于方程在由兩個根,然后構(gòu)造二次函數(shù),轉(zhuǎn)化為零點(diǎn)分布問題可解;(3)將問題轉(zhuǎn)化為方程在上有2022個實數(shù)根,再轉(zhuǎn)化為兩個函數(shù)交點(diǎn)個數(shù)問題,然后可解.【小問1詳解】因為整理得,令,因為,所以在區(qū)間有零點(diǎn),即存在,使得,即存在,使得,所以,函數(shù)在上是“1躍點(diǎn)”函數(shù)【小問2詳解】函數(shù)在上存在2個“1躍點(diǎn)”方程在上有兩個實數(shù)根,即在上有兩個實數(shù)根,令,則解得或,所以的取值范圍是【小問3詳解】由,得,即因為函數(shù)在上有2022個“躍點(diǎn)”,所以方程在上有2022個解,即函數(shù)與的圖象有2022個交點(diǎn).所以或或即或或20、(1)當(dāng)且僅當(dāng)時,取得最小值為18;(2)【解析】(1)化簡得,再利用基本不等式求最值;(2)由題得,再解一元二次不等式得解.【詳解】(1)原式,當(dāng)且僅當(dāng)時取等號,所以最小值為18.(2),即,即,解得,所以,當(dāng)且僅當(dāng)取等號所以的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度農(nóng)業(yè)科技園區(qū)運(yùn)營管理合同標(biāo)準(zhǔn)3篇
- 二零二五年度林權(quán)登記與不動產(chǎn)登記網(wǎng)絡(luò)安全保障合同
- 2025年度智能控制噴錨工程勞務(wù)施工合同標(biāo)準(zhǔn)
- 二零二五年度美術(shù)教育研發(fā)中心美術(shù)教師聘用合同4篇
- 2025年度民間擔(dān)保人文化創(chuàng)意產(chǎn)業(yè)貸款合同模板
- 二零二五年度數(shù)字經(jīng)濟(jì)派遣合同就業(yè)協(xié)議書范本
- 2025年新能源汽車零部件采購及供應(yīng)合同范本2篇
- 2025年度山西旅游行業(yè)勞動合同書范本3篇
- 2025版智能門衛(wèi)服務(wù)與社區(qū)治安巡邏合同3篇
- 2025裝載機(jī)駕駛員聘用合同-裝載機(jī)駕駛員職業(yè)技能鑒定協(xié)議3篇
- 《openEuler操作系統(tǒng)》考試復(fù)習(xí)題庫(含答案)
- 《天潤乳業(yè)營運(yùn)能力及風(fēng)險管理問題及完善對策(7900字論文)》
- 醫(yī)院醫(yī)學(xué)倫理委員會章程
- xx單位政務(wù)云商用密碼應(yīng)用方案V2.0
- 2024-2025學(xué)年人教版生物八年級上冊期末綜合測試卷
- 2025年九省聯(lián)考新高考 語文試卷(含答案解析)
- 死亡病例討論總結(jié)分析
- 第二章 會展的產(chǎn)生與發(fā)展
- 空域規(guī)劃與管理V2.0
- JGT266-2011 泡沫混凝土標(biāo)準(zhǔn)規(guī)范
- 商戶用電申請表
評論
0/150
提交評論