版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省合肥市新城高升學(xué)校2023-2024學(xué)年高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知水平放置的四邊形按斜二測畫法得到如圖所示的直觀圖,其中,,,,則原四邊形的面積為()A. B.C. D.2.若、是全集真子集,則下列四個命題①;②;③;④中與命題等價的有A.1個 B.2個C.3個 D.4個3.已知函數(shù),下列說法錯誤的是()A.函數(shù)在上單調(diào)遞減B.函數(shù)是最小正周期為的周期函數(shù)C.若,則方程在區(qū)間內(nèi),最多有4個不同的根D.函數(shù)在區(qū)間內(nèi),共有6個零點(diǎn)4.青少年視力是社會普遍關(guān)注的問題,視力情況可借助視力表測量.通常用五分記錄法和小數(shù)記錄法記錄視力數(shù)據(jù),小數(shù)記錄法的數(shù)據(jù)V和五分記錄法的數(shù)據(jù)L滿足,已知某同學(xué)視力的五分記錄法的數(shù)據(jù)為4.9,則其視力的小數(shù)記錄法的數(shù)據(jù)約為()(注:)A.0.6 B.0.8C.1.2 D.1.55.下列關(guān)于集合的關(guān)系式正確的是A. B.C. D.6.設(shè)集合A={1,2,3},B={2,3,4},則A∪B=()A.{1,2,3,4} B.{1,2,3}C.{2,3,4} D.{1,3,4}7.若函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)向右平移個單位,縱坐標(biāo)保持不變,得到的函數(shù)圖象關(guān)于軸對稱,則的最小值為()A. B.C. D.8.若函數(shù)的定義域是()A. B.C. D.9.已知扇形的圓心角為,面積為8,則該扇形的周長為()A.12 B.10C. D.10.過點(diǎn)作圓的兩條切線,切點(diǎn)分別為,,則所在直線的方程為()A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.已知函數(shù),則當(dāng)_______時,函數(shù)取得最小值為_________.12.若冪函數(shù)的圖象過點(diǎn),則___________.13.冪函數(shù)為偶函數(shù)且在區(qū)間上單調(diào)遞減,則________,________.14.已知函數(shù)是奇函數(shù),當(dāng)時,,若,則m的值為______.15.點(diǎn)是一次函數(shù)圖象上一動點(diǎn),則的最小值是______三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.某企業(yè)為努力實(shí)現(xiàn)“碳中和”目標(biāo),計劃從明年開始,通過替換清潔能源減少碳排放量,每年減少的碳排放量占上一年的碳排放量的比例均為,并預(yù)計年后碳排放量恰好減少為今年碳排放量的一半.(1)求的值;(2)若某一年的碳排放量為今年碳排放量的,按照計劃至少再過多少年,碳排放量不超過今年碳排放量的?17.已知且,函數(shù).(1)求的定義域;(2)判斷的奇偶性,并用定義證明;(3)求使的取值范圍.18.已知向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π](1)若與共線,求x的值;(2)若⊥,求x的值;(3)記f(x)=?,當(dāng)f(x)取得最小值時,求x的值19.已知函數(shù)(1)證明:函數(shù)在上是增函數(shù);(2)求在上的值域20.已知函數(shù).(1)若函數(shù)在上至少有一個零點(diǎn),求的取值范圍;(2)若函數(shù)在上的最大值為3,求的值.21.已知,且,求的值
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、B【解析】根據(jù)直觀圖畫出原圖,可得原圖形為直角梯形,計算該直角梯形的面積即可.【詳解】過點(diǎn)作,垂足為則由已知可得四邊形為矩形,為等腰直角三角形,根據(jù)直觀圖畫出原圖如下:可得原圖形為直角梯形,,且,可得原四邊形的面積為故選:B.2、B【解析】直接根據(jù)集合的交集、并集、補(bǔ)集的定義判斷集合間的關(guān)系,從而求出結(jié)論【詳解】解:由得Venn圖,①;②;③;④;故和命題等價的有①③,故選:B【點(diǎn)睛】本題主要考查集合的包含關(guān)系的判斷及應(yīng)用,考查集合的基本運(yùn)算,考查了Venn圖的應(yīng)用,屬于基礎(chǔ)題3、B【解析】A.由時,判斷;B.易知是偶函數(shù),作出其圖象判斷;C.在同一坐標(biāo)系中作出的圖象判斷;D.根據(jù)函數(shù)是偶函數(shù),利用其圖象,判斷的零點(diǎn)個數(shù)即可.【詳解】A.當(dāng)時,,而,上遞減,故正確;B.因為,所以是偶函數(shù),當(dāng)時,,作出其圖象如圖所示:由圖象知;函數(shù)不是周期函數(shù),故錯誤;C.在同一坐標(biāo)系中作出的圖象,如圖所示:由圖象知:當(dāng),方程在區(qū)間內(nèi),最多有4個不同的根,故正確;D.因為函數(shù)是偶函數(shù),只求的零點(diǎn)個數(shù)即可,如圖所示:由函數(shù)圖象知,在區(qū)間內(nèi)共有3個,所以函數(shù)在區(qū)間內(nèi),共有6個零點(diǎn),故正確;故選:B4、B【解析】當(dāng)時,即可得到答案.【詳解】由題意可得當(dāng)時故選:B5、A【解析】因為{0}是含有一個元素的集合,所以{0}≠,故B不正確;元素與集合間不能劃等號,故C不正確;顯然相等,故D不正確.故選:A6、A【解析】根據(jù)并集定義求解即可.【詳解】∵A={1,2,3},B={2,3,4},根據(jù)并集的定義可知:A∪B={1,2,3,4},選項A正確,選項BCD錯誤.故選:A.7、B【解析】由題設(shè)可得,根據(jù)已知對稱性及余弦函數(shù)的性質(zhì)可得,即可求的最小值.【詳解】由題設(shè),關(guān)于軸對稱,∴且,則,,又,∴的最小值為.故選:B.8、C【解析】根據(jù)偶次根號下非負(fù),分母不等于零求解即可.【詳解】解:要使函數(shù)有意義,則需滿足不等式,解得:且,故選:C9、A【解析】利用已知條件求出扇形的半徑,即可得解周長【詳解】解:設(shè)扇形的半徑r,扇形OAB的圓心角為4弧度,弧長為:4r,其面積為8,可得4r×r=8,解得r=2扇形的周長:2+2+8=12故選:A10、B【解析】先由圓方程得到圓心和半徑,求出的長,以及的中點(diǎn)坐標(biāo),得到以為直徑的圓的方程,由兩圓方程作差整理,即可得出所在直線方程.【詳解】因為圓的圓心為,半徑為,所以,的中點(diǎn)為,則以為直徑的圓的方程為,所以為兩圓的公共弦,因此兩圓的方法作差得所在直線方程為,即.故選:B.【點(diǎn)睛】本題主要考查求兩圓公共弦所在直線方法,屬于常考題型.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、①.##②.【解析】根據(jù)求出的范圍,根據(jù)余弦函數(shù)的圖像性質(zhì)即可求其最小值.【詳解】∵,∴,∴當(dāng),即時,取得最小值為,∴當(dāng)時,最小值為.故答案為:;-3.12、27【解析】代入已知點(diǎn)坐標(biāo)求出冪函數(shù)解析式即可求,【詳解】設(shè)代入,即,所以,所以.故答案為:27.13、(1).或3(2).4【解析】根據(jù)題意可得:【詳解】區(qū)間上單調(diào)遞減,,或3,當(dāng)或3時,都有,,.故答案為:或3;4.14、【解析】由奇函數(shù)可得,則可得,解出即可【詳解】因為是奇函數(shù),,所以,即,解得故答案為:【點(diǎn)睛】本題考查利用奇偶性求值,考查已知函數(shù)值求參數(shù)15、【解析】把點(diǎn)代入函數(shù)的解析式得到,然后利用基本不等式求最小值.【詳解】由題意可知,又因為,所以,當(dāng)且僅當(dāng)即時等號成立所以的最小值是.故答案為:.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1);(2)年.【解析】(1)設(shè)今年碳排放量為,則由題意得,從而可求出的值;(2)設(shè)再過年碳排放量不超過今年碳排放量的,則,再把代入解關(guān)于的不等式即可得答案【詳解】解:設(shè)今年碳排放量為.(1)由題意得,所以,得.(2)設(shè)再過年碳排放量不超過今年碳排放量,則,將代入得,即,得.故至少再過年,碳排放量不超過今年碳排放量的.17、(1);(2)函數(shù)是偶函數(shù),詳見解析;(3)當(dāng)時,;當(dāng)時,或.【解析】(1)根據(jù)對數(shù)的真數(shù)為正數(shù)列式可解得結(jié)果;(2)函數(shù)是偶函數(shù),根據(jù)偶函數(shù)的定義證明即可;(3)不等式化為后,分類討論底數(shù),根據(jù)對數(shù)函數(shù)的單調(diào)性可解得結(jié)果.【小問1詳解】要使函數(shù)數(shù)有意義,則必有,解得,所以函數(shù)的定義域是;【小問2詳解】函數(shù)是偶函數(shù),證明如下:∵,,又∴函數(shù)是偶函數(shù);【小問3詳解】使,即當(dāng)時,有,,當(dāng)時,有,解得或.綜上所述:當(dāng)時,;當(dāng)時,或.18、(1);(2);(3).【解析】(1)利用兩向量平行有可得到一個關(guān)于的方程,利用三角函數(shù)恒等變化化簡進(jìn)而求得x的值.(2)利用兩向量垂直有可得到一個關(guān)于的方程,利用三角函數(shù)恒等變化化簡進(jìn)而求得x的值.(3)根據(jù)化出一個關(guān)于的方程,再利用恒等變化公式將函數(shù)轉(zhuǎn)化成,從而找到最小值所取得的x的值.【詳解】解:(1)∵向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π]與共線,∴,∴tanx=-,∵x∈[0,π],∴x=(2)∵⊥,∴cosx-sinx=0,∴tanx=1,∵x∈[0,π],∴x=(3)f(x)=?=cosx-,∵x∈[0,π],∴x-∈[-,],∴x-=時,f(x)取得最小值-2,∴當(dāng)f(x)取得最小值時,x=【點(diǎn)睛】向量間的位置關(guān)系:兩向量垂直,則,兩向量平行,則.19、(1)證明見解析(2)【解析】(1)設(shè),化簡計算并判斷正負(fù)即可得出;(2)根據(jù)單調(diào)性即可求解.【小問1詳解】設(shè),,因為,所以,,則,即,所以函數(shù)在上是增函數(shù);【小問2詳解】由(1)可知,在單調(diào)遞增,所以,所以在的值域為.20、(1);(2)或.【解析】(1)由函數(shù)在至少有一個零點(diǎn),方程至少有一個實(shí)數(shù)根,,解出即可;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年全國助理社會工作師《社會工作實(shí)務(wù)》考試題庫參考答案
- 2024年江西楓林涉外經(jīng)貿(mào)職業(yè)學(xué)院單招職業(yè)技能測試題庫標(biāo)準(zhǔn)卷
- 單位管理制度收錄大全職員管理篇
- 2024年企業(yè)年終總結(jié)范文(30篇)
- Module 2 Unit 3 課后培優(yōu)分級練(原卷版)
- 2025年西南政法大學(xué)002經(jīng)濟(jì)學(xué)院025100金融報錄數(shù)據(jù)分析報告初試+復(fù)試
- Unit 1 Topic 2 Section B 導(dǎo)學(xué)案(詞匯、短語、句子、語法和題型) 2022-2023學(xué)年仁愛七年級上冊(原卷版)
- 2024-2025年中國氙氣燈行業(yè)市場深度分析及發(fā)展前景預(yù)測報告
- 北京市某學(xué)校技術(shù)入股成立研究院項目可行性研究報告
- 凝點(diǎn)測定儀項目可行性研究報告建議書申請備案
- 藝術(shù)漆培訓(xùn)課件
- 四川新農(nóng)村建設(shè)農(nóng)房設(shè)計方案圖集川東南部分
- 2024年江蘇省普通高中學(xué)業(yè)水平測試小高考生物、地理、歷史、政治試卷及答案(綜合版)
- 浙江省杭州市西湖區(qū)2023-2024學(xué)年六年級上學(xué)期期末語文試卷
- 擋風(fēng)玻璃自動涂膠方案
- 復(fù)旦大學(xué)新聞傳播學(xué)考博真題
- IEC60335-1(中文)
- 對于申請增加辦公用房請示
- 民用無人駕駛航空器系統(tǒng)空中交通管理辦法
- 姓名代碼查詢
- 四層電梯控制系統(tǒng)設(shè)計-(共38頁)
評論
0/150
提交評論