




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
11.1與三角形有關(guān)的線段1.理解和掌握三角形的相關(guān)概念以及三角形的表示方法和分類;2.理解和掌握三角形的三邊關(guān)系定理和三角形的穩(wěn)定性;3.理解和掌握三角形的角平分線、中線和高線。一、三角形的邊1.三角形及其相關(guān)定義。(1)定義:由不在同一條直線上的3條線段首尾順次相接所組成的圖形叫作三角形。注意理解三角形的定義應(yīng)注意以下3個方面:①不在同一條直線上;②3條線段;③首尾順次相接。這是判定三角形的標(biāo)準(zhǔn)。(2)三角形的基本元素:①三角形的邊,即組成三角形的線段;②三角形的角,即相鄰兩邊所組成的角叫作三角形的內(nèi)角,簡稱三角形的角;③三角形的頂點,即相鄰兩邊的公共端點。(3)三角形的表示:三角形用符號“△”表示,頂點為A,B,C的三角形記作“△ABC”,讀作“三角形ABC”?!纠斫夂屯卣埂繂为毜摹鳑]有意義;△ABC的三邊可以用大寫字母AB,BC,AC來表示,也可以用小寫字母a,b,c來表示,頂點A所對的邊用a表示,頂點B,C所對的邊分別用b,c表示。2.三角形的分類(1)按內(nèi)角分類:直角三角形:有一個角是直角的三角形(2)按邊分類:【理解和拓展】①不等邊三角形:三邊都不相等的三角形。②等腰三角形:有兩條邊相等的三角形叫作等腰三角形,相等的兩邊都叫作腰,另外一邊叫作底邊,兩腰的夾角叫作頂角,腰與底邊的夾角叫作底角。③等邊三角形:三邊都相等的三角形。3.三角形的三邊關(guān)系1.任意兩邊之和大于第三邊。任意兩邊之差小于第三邊。(理論依據(jù):兩點之間,線段最短。)2.在△ABC中,;在△ABC中,。3.應(yīng)用:①判斷3條線段能否組成三角形,若兩條較短的線段之和大于最長的線段,則這3條線段可以組成三角形;反之,則不能組成三角形。②當(dāng)已知三角形兩邊長,可求第三邊長的取值范圍。它大于其他兩邊的差,小于其他兩邊的和。題型一三角形的分類如圖表示的是三角形的分類,則正確的表示是(
)A.M表示三邊均不相等的三角形,N表示等腰三角形,P表示等邊三角形B.M表示三邊均不相等的三角形,N表示等邊三角形,P表示等腰三角形C.M表示等腰三角形,N表示等邊三角形,P表示三邊均不相等的三角形D.M表示等邊三角形,N表示等腰三角形,P表示三邊均不相等的三角形【答案】B【分析】根據(jù)三角形按照邊的分類方法解答.【詳解】解:根據(jù)三角形的分類,三角形可以分為三邊都不相等的三角形和等腰三角形,等腰三角形分為底邊和腰不相等的三角形和底邊三角形,故選擇B.【點睛】本題考查三角形的分類,牢記三角形按照邊的分類方法是解決問題的關(guān)鍵.1.下列說法錯誤的是(
)A.有一個內(nèi)角是直角的三角形是直角三角形B.一個三角形只能有一個內(nèi)角是鈍角C.對頂角相等D.有兩個內(nèi)角是銳角的三角形是銳角三角形【答案】D【分析】根據(jù)三角形的分類條件和對頂角的概念即可對選項進(jìn)行判斷.【詳解】解:A、有一個內(nèi)角是直角的三角形是直角三角形,選項正確,不符合題意;B、一個三角形只能有一個內(nèi)角是鈍角,選項正確,不符合題意;C、兩直線相交,對頂角相等,選項正確,不符合題意;D、有兩個內(nèi)角是銳角的三角形不一定是銳角三角形,可能是直角或鈍角三角形,選項錯誤,符合題意;故選:D.【點睛】本題考查了三角形的概念及對頂角,解題的關(guān)鍵是掌握三角形的分類條件.2.下列說法正確的是(
)A.一個直角三角形一定不是等腰三角形B.一個鈍角三角形一定不是等腰三角形C.一個等腰三角形一定不是銳角三角形D.一個等邊三角形一定不是鈍角三角形【答案】D【分析】根據(jù)三角形的分類方法進(jìn)行分析判斷.三角形按角分為銳角三角形、直角三角形和鈍角三角形;三角形按邊分為不等邊三角形和等腰三角形(等邊三角形).【詳解】解:A、如等腰直角三角形,既是直角三角形,也是等腰三角形,故該選項錯誤;B、如頂角是120°的等腰三角形,是鈍角三角形,也是等腰三角形,故該選項錯誤;C、如等邊三角形,既是等腰三角形,也是銳角三角形,故該選項錯誤;D、一個等邊三角形的三個角都是60°.故該選項正確.故選D.【點睛】此題考查了三角形的分類,理解各類三角形的定義是解題關(guān)鍵.題型二構(gòu)成三角形的條件下列長度的各組線段能組成一個三角形的是(
)A. B.C. D.【答案】D【分析】根據(jù)兩邊之和大于第三邊,兩邊之差小于第三邊判斷即可.【詳解】A.,不符合題意;B.,不符合題意;C.,不符合題意;
D.,符合題意,故選D.【點睛】本題考查了是否構(gòu)成三角形,熟練掌握三角形兩邊之和大于第三邊是解題的關(guān)鍵.1.如果三條線段長度的比是:①,②,③,④,⑤,⑥.那么其中可構(gòu)成三角形的個數(shù)為(
)A.個 B.個 C.個 D.個【答案】B【分析】根據(jù)三角形三邊關(guān)系進(jìn)行求解判斷即可.【詳解】解:①中,設(shè)三邊為,由可得,三邊不能構(gòu)成三角形,故不符合要求;②中,設(shè)三邊為,由可得,三邊不能構(gòu)成三角形,故不符合要求;③中,設(shè)三邊為,由可得,三邊不能構(gòu)成三角形,故不符合要求;④中,設(shè)三邊為,由可得,三邊不能構(gòu)成三角形,故不符合要求;⑤中,設(shè)三邊為,由,可得,三邊能構(gòu)成三角形,故符合要求;⑥設(shè)三邊為,由,,可得,三邊能構(gòu)成三角形,故符合要求;∴共有2個能構(gòu)成三角形,故選:B.【點睛】本題考查了三角形的三邊關(guān)系.熟練掌握三角形中三邊關(guān)系滿足:兩邊之和大于第三邊,兩邊之差小于第三邊.2.若下列各組值都代表線段的長度,則三條線段首尾順次相接能構(gòu)成三角形的是(
)A.3,3,4 B.4,9,5 C.5,18,8 D.9,15,3【答案】A【分析】根據(jù)三角形的三邊關(guān)系逐一判斷即可得答案.【詳解】解:A、,所以能構(gòu)成三角形,故符合題意;B、,所以不能構(gòu)成三角形,故不符合題意;C、,所以不能構(gòu)成三角形,故不符合題意D、,所以不能構(gòu)成三角形,故不符合題意;故選:A.【點睛】此題考查了三角形的三邊關(guān)系:三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,熟記三角形的三邊關(guān)系是解題的關(guān)鍵.題型三三角形三邊關(guān)系定理的應(yīng)用a,b,c是三角形的三邊長,化簡后等于(
)A. B. C. D.【答案】B【分析】根據(jù)三角形三邊之間的關(guān)系得出a、b、c之間的大小關(guān)系,再根據(jù)絕對值的性質(zhì)求值.【詳解】解:∵a、b、c是三角形的三邊長,∴a+b>c,b+c>a,a+b>c,∴a﹣b﹣c<0,b﹣c+a>0,c﹣a﹣b<0,∴|a﹣b﹣c|+|b﹣c+a|﹣|c﹣a﹣b|=﹣a+b+c+b﹣c+a+c﹣a﹣b=b+c﹣a.故選:B.【點睛】本題考查了三角形的三邊關(guān)系以及絕對值的化簡,三角形三邊關(guān)系定理:三角形任意兩邊之和大于第三邊.1.已知a,b、c是的三條邊長,化簡的結(jié)果為()A. B. C. D.0【答案】D【分析】根據(jù)三角形三邊關(guān)系得到,,再去絕對值,合并同類項即可求解.【詳解】解:∵a,b,c是的三條邊長,∴,∴.故選:D.【點睛】此題考查了三角形三邊關(guān)系,解題的關(guān)鍵是根據(jù)三邊關(guān)系化簡絕對值.2.已知a、b、c分別為△ABC的三邊長,并滿足|a﹣4|+(c﹣3)2=0.若b為奇數(shù),則△ABC的周長為()A.10 B.8或10 C.10或12 D.8或10或12【答案】C【分析】根據(jù)非負(fù)性的性質(zhì)求出,再由三角形三邊的關(guān)系求出,再由b為奇數(shù),得到b的值可以為3或5,由此即可得到答案.【詳解】解:∵a、b、c分別為△ABC的三邊長,并滿足|a﹣4|+(c﹣3)2=0,,,∴,∴,∵,∴,又∵b為奇數(shù),∴b的值可以為3或5,∴△ABC的周長=a+b+c=10或12,故選C.【點睛】本題主要考查了非負(fù)性的性質(zhì),三角形三邊的關(guān)系,正確求出a、c的值是解題的關(guān)鍵.二、三角形的高、中線與角平分線1.三角形的3條重要線段三角形的高、中線和角平分線是三角形中3條重要的線段,它們提供了重要的線段或角的關(guān)系,為我們以后深入研究三角形的一些特征起著很大的作用。因此,我們需要從不同的角度弄清這3條線段。線段名稱三角形的高三角形的中線三角形的角平分線文字語言從三角形的一個頂點向它的對邊所在的直線作垂線,頂點和垂足之間的線段.三角形中,連接一個頂點和它對邊中點的線段.三角形一個內(nèi)角的平分線與它的對邊相交,這個角的頂點與交點之間的線段.圖形語言作圖語言過點A作AD⊥BC于點D.取BC邊的中點D,連接AD.作∠BAC的平分線AD,交BC于點D.標(biāo)示圖形符號語言1.AD是△ABC的高.2.AD是△ABC中BC邊上的高.3.AD⊥BC于點D.4.∠ADC=90°,∠ADB=90°.(或∠ADC=∠ADB=90°)1.AD是△ABC的中線.2.AD是△ABC中BC邊上的中線.3.BD=DC=BC4.點D是BC邊的中點.1.AD是△ABC的角平分線.2.AD平分∠BAC,交BC于點D.3.∠1=∠2=∠BAC.推理語言因為AD是△ABC的高,所以AD⊥BC.(或∠ADB=∠ADC=90°)因為AD是△ABC的中線,所以BD=DC=BC.因為AD平分∠BAC,所以∠1=∠2=∠BAC.用途舉例1.線段垂直.2.角度相等.1.線段相等.2.面積相等.角度相等.重要特征三角形的三條高(或它們的延長線)交于一點.一個三角形有三條中線,它們交于三角形內(nèi)一點.一個三角形有三條角平分線,它們交于三角形內(nèi)一點.2.“三線”的交點(1)“三線”的交點位置:一個三角形有3條中線、3條角平分線、3條高,它們所在直線分別相交于一點。中線:3條中線交于三角形內(nèi)部。重心角平分線:3條角平分線交于三角形內(nèi)部。內(nèi)心(2)銳角三角形、直角三角形和鈍角三角形的高的交點的位置如下圖:題型四與三角形的高有關(guān)的計算如圖,已知的面積為48,,點D為邊上一點,過點D分別作于E,于F,若,則長為(
)A.2 B.3 C.4 D.6【答案】C【分析】如圖所示,連接,根據(jù)三角形面積公式得到,結(jié)合題意求出即可.【詳解】解:如圖所示,連接,∵,∴,∵,,∴,∴,故選C.【點睛】本題考查了三角形的面積計算,將的面積看作是兩個小三角形的面積之和是解答本題的關(guān)鍵.1.如圖,在中,,,,,是邊上的高,則的長是(
)A.2.4 B.3.6 C.4 D.4.8【答案】D【分析】利用等面積法求解即可.【詳解】解:由題意可得:,則,故選:D【點睛】此題考查了等面積法求三角形的高,解題的關(guān)鍵是掌握等面積法.2.如圖,已知,,且,,,那么的長度為(
)A.2 B.3 C.4 D.5【答案】C【分析】根據(jù)三角形的面積公式可求得的長度【詳解】∵,,∴∵,,∴故選:C【點睛】本題主要考查了三角形的高和面積公式,熟練掌握三角形面積公式是解決問題的關(guān)鍵題型五根據(jù)三角形中線求長度如圖,是的中線,點D是上一點,若,則的長為()A.5 B.6 C.7 D.8【答案】C【分析】先求出的長,再根據(jù)中線的定義進(jìn)行求解即可.【詳解】解:∵,∴,∵是的中線,∴,故選:C.【點睛】本題考查了線段的和差和中線的定義,熟練掌握知識點是解題的關(guān)鍵.1.如圖,在中,是高,是中線,若,,則的長為(
).A.1 B. C.2 D.4【答案】D【分析】直接利用三角形面積公式求得,再根據(jù)中線的性質(zhì)即可求解.【詳解】解:∵,,即,∴∵是中線,即點是的中點,∴,故選:D.【點睛】本題考查三角形面積和中線的性質(zhì),解題的關(guān)鍵是熟練掌握三角形面積公式求得.2.下列說法正確的是(
)①三角形的角平分線可能在三角形的內(nèi)部或外部
②三角形按邊分類可分為等腰三角形、等邊三角形和不等邊三角形
③三角形三條高都在三角形內(nèi)部
④三角形的三條中線交于一點A.①②③④ B.②④ C.①③ D.④【答案】D【分析】根據(jù)三角形的角平分線的定義和性質(zhì)判斷①;根據(jù)三角形分類判斷②;根據(jù)三角形的高的定義及性質(zhì)判斷③;根據(jù)三角形的中線的定義及性質(zhì)判斷④即可.【詳解】解:三角形的三條角平分線都在三角形內(nèi)部,故①說法錯誤;三角形按邊分類可分為等腰三角形、和不等邊三角形,等腰三角形分為等邊三角形和底和腰不相等的等腰三角形,故②說法錯誤;銳角三角形的三條高都在三角形內(nèi)部;直角三角形有兩條高與直角邊重合,另一條高在三角形內(nèi)部;鈍角三角形有兩條高在三角形外部,一條高在三角形內(nèi)部.故③說法錯誤;三角形的三條中線交于一點,故④說法正確;所以說法正確的是④,故選:D.【點睛】本題考查了三角形的角平分線、三角形的按邊分類,中線和高的定義及性質(zhì),是基礎(chǔ)題.從三角形的一個頂點向它的對邊作垂線,垂足與頂點之間的線段叫做三角形的高;三角形一個內(nèi)角的平分線與這個內(nèi)角的對邊交于一點,則這個內(nèi)角的頂點與所交的點間的線段叫做三角形的角平分線;連接三角形一邊的中點與此邊所對頂點的線段叫做三角形的中線.題型六根據(jù)三角形中線求面積如圖,在中,點D為上一點,E,F(xiàn)分別為線段,的中點,連接,,,已知,,則的面積為(
)A.25 B.9 C.2 D.1【答案】D【分析】根據(jù)根據(jù)中點可得到,,然后用面積作差計算即可.【詳解】解:∵E為線段的中點,∴,,∴,∵F分別為線段的中點,∴,∴.故選:D【點睛】本題主要考查中線性質(zhì)應(yīng)用,掌握中線二等分三角形面積是解題的關(guān)鍵.1.如圖,已知D、E分別為的邊的中點,為的中線,連接,若四邊形的面積為15,則的面積為(
)A.20 B.24 C.26 D.30【答案】B【分析】連接,設(shè),根據(jù)等底同高的三角形的面積相等,以及三角形中線的性質(zhì)即可得到結(jié)論.【詳解】解:連接DE,設(shè),∵D、E分別為的邊的中點,為的中線,∴,∴,∴,∴,∴四邊形的面積,∴,∴的面積.故選B.【點睛】本題考查了中線的定義,三角形的面積,熟練掌握等底同高的三角形的面積相等和中線平分三角形面積是解題的關(guān)鍵.2.如圖,是中邊上的中線,是邊上的高,,,(
)A.3 B.4 C.5 D.6【答案】D【分析】根據(jù)是中邊上的中線,得,根據(jù)是邊上的高,得,即可得.【詳解】解:∵是中邊上的中線,∴,∵是邊上的高,,∴,,,故選:D.【點睛】本題考查了三角形的中線,三角形的面積公式,解題的關(guān)鍵是理解題意,掌握這些知識點.題型七重心的概念及應(yīng)用下列命題中錯誤的是(
)A.三角形三條中線的交點是三角形的重心 B.兩直線平行,同旁內(nèi)角互補(bǔ)C.等腰三角形底邊的中線是它的對稱軸 D.三角形任意兩邊之和大于第三邊【答案】C【分析】根據(jù)軸對稱圖形的概念、三角形的性質(zhì)以及平行線的性質(zhì)判斷即可.【詳解】解:A、三角形三條中線的交點是三角形的重心,A說法正確;B、兩直線平行,同旁內(nèi)角互補(bǔ),B說法正確C、等腰三角形是軸對稱圖形,底邊中線所在的直線是它的對稱軸,C說法錯誤;D、三角形任意兩邊之和大于第三邊,D說法正確;故選:C.【點睛】本題考查的是對稱軸的概念、三角形的性質(zhì)以及平行線的性質(zhì),正確掌握相關(guān)概念以及性質(zhì)定理是解題的關(guān)鍵.1.下列說法錯誤的是(
)A.三角形的三條邊的中線都在三角形內(nèi)部 B.三角形的三個內(nèi)角的平分線都在三角形內(nèi)部C.三角形的三條高都在三角形內(nèi)部 D.直角三角形有兩條高與三角形的邊重合【答案】C【詳解】A,三角形的中線是指一邊的中點與對頂點的連線,作圖知三角形的三條邊的中線都在三角形內(nèi)部,A選項說法正確,不符合題意;B,三角形的三個內(nèi)角的平分線都在三角形內(nèi)部,B選項說法正確,不符合題意;C,鈍角三角形的兩條高在形外,直角三角形兩條高與兩邊重合,C錯誤,符合題意;D,直角三角形有兩條高與三角形的兩直角邊重合,D選項說法正確,不符合題意.【點睛】本題考查了三角形中的幾條重要的線段,關(guān)鍵是理解各種線段的概念,并且嘗試畫出對應(yīng)的圖形.2.如圖,在中,交邊于點D.設(shè)△ABC的重心為Q,若點Q在線段上,則下列結(jié)論正確的是(
).A.平分 B.為的中垂線C. D.的周長等于的周長【答案】C【分析】利用重心的性質(zhì)得到為的中線,從而可對各選項進(jìn)行判斷.【詳解】解:∵的重心為G,點G在線段AD上,∴為的中線,∴,選項C符合題意;當(dāng)時,平分,為的中垂線,的周長等于的周長,∴選項A、B、D都不符合題意.故選:C.【點睛】本題考查了三角形重心的概念,三角形重心是三角形三邊中線的交點.題型八三角形角平分線的定義如圖,在中,,則下列說法中,正確的是()A.是的中線 B.是的角平分線C.是的高線 D.是的中線【答案】B【分析】利用已知條件可得,即可得到答案.【詳解】解:∵,∴,,即,∴是的角平分線,故選:B.【點睛】本題考查三角形中線高線、角平分線的判斷,解題的關(guān)鍵是根據(jù)題意得到.1.下列命題是假命題的是()A.兩點之間,線段最短 B.角的平分線是一條射線C.三角形的中線的交點在三角形內(nèi)部 D.三角形的高的交點在三角形內(nèi)部【答案】D【分析】分別根據(jù)線段公理,角平分線的定義,三角形中線及高線的特點進(jìn)行判斷即可.【詳解】A.兩點之間,線段最短,是公理,說法正確,是真命題;B.角的平分線是一條射線,說法正確,是真命題;C.三角形的中線的交點在三角形內(nèi)部,說法正確,是真命題;D.三角形的高的交點不一定都在三角形內(nèi)部,如鈍角三角形,原說法錯誤,是假命題;故選:D.【點睛】本題考查了真假命題的判斷,涉及段公理,角平分線的定義,三角形中線及高線,熟練掌握知識點是解題的關(guān)鍵.2.下列說法正確的是()A.三角形的三條中線交于一點B.三角形的角平分線是射線C.三角形的高所在的直線交于一點,這一點不在三角形內(nèi)就在三角形外D.三角形的一條角平分線能把三角形分成兩個面積相等的三角形【答案】A【分析】根據(jù)三角形的中線,角平分線,高線的定義和性質(zhì),逐一進(jìn)行判斷即可.【詳解】A、三角形的三條中線交于一點,說法正確,符合題意;B、三角形的角平分線是線段,原說法錯誤,不符合題意;C、三角形的高所在的直線交于一點,當(dāng)三角形為銳角三角形時,交點在三角形的內(nèi)部,當(dāng)三角形為直角三角形時,交點在直角頂點上,當(dāng)三角形為鈍角三角形時,交點在三角形的外部,原說法錯誤,不符合題意;D、三角形的一條中線能把三角形分成兩個面積相等的三角形,原說法錯誤,不符合題意;故選A.【點睛】本題考查三角形的三條重要線段.熟練掌握三角形中的中線,角平分線和高線是三條線段,三角形的中線平分三角形的面積,以及高線所在的直線交于一點,該點可能在三角形的內(nèi)部,外部和三角形上,是解題的關(guān)鍵.三、三角形的穩(wěn)定性1.概念:三角形的3條邊確定后,三角形的形狀和大小就確定不變了,這個性質(zhì)叫作三角形的穩(wěn)定性。2.應(yīng)用:三角形的穩(wěn)定性在生活和工業(yè)生產(chǎn)中有很多作用。例如:房屋的人字梁具有三角形的結(jié)構(gòu),所以堅固而穩(wěn)定;在柵欄門上斜著釘一條(或兩條)木板,構(gòu)成一個三角形,就可以使柵欄門穩(wěn)固而不變形。工業(yè)生產(chǎn)中的大橋鋼架、輸電線支架、起重機(jī)臂等都采用三角形結(jié)構(gòu),也是利用了三角形的穩(wěn)定性。題型九三角形的穩(wěn)定性如圖是一個起重機(jī)的示意圖,在起重架中間增加了很多斜條,它所運(yùn)用的幾何原理是()A.三角形兩邊之和大于第三邊B.三角形具有穩(wěn)定性C.三角形兩邊之差小于第三邊D.直角三角形的兩銳角互余【答案】B【分析】根據(jù)三角形的穩(wěn)定性解答即可.【詳解】解:在起重架中間增加了很多斜條,它所運(yùn)用的幾何原理是三角形具有穩(wěn)定性,故選:B.【點睛】本題考查的是三角形的穩(wěn)定性,熟練掌握當(dāng)三角形三邊的長度確定后,三角形的形狀和大小就能唯一確定下來是解答本題的關(guān)鍵.1.下列圖形中具有穩(wěn)定性的是(
)A. B. C. D.【答案】D【分析】根據(jù)三角形具有穩(wěn)定性,即可對圖形進(jìn)行判斷.【詳解】解:A、中間豎線的兩側(cè)是四邊形,不具有穩(wěn)定性,故本選項錯誤;B、對角線下方是四邊形,不具有穩(wěn)定性,故本選項錯誤;C、三個四邊形,不具有穩(wěn)定性,故本選項錯誤;D、都是三角形組成,具有穩(wěn)定性,故本選項正確.故選:D.【點睛】本題考查了三角形的穩(wěn)定性,解題的關(guān)鍵是利用三角形的穩(wěn)定性判斷.2.如圖,工人師傅砌門時,為使長方形門框ABCD不變形,常用木條EF將其固定,這種做法的依據(jù)是(
)A.兩點之間線段最短 B.長方形的對稱性C.四邊形具有不穩(wěn)定性 D.三角形具有穩(wěn)定性【答案】D【分析】根據(jù)三角形的穩(wěn)定性即可選擇.【詳解】解:構(gòu)成三角形,利用三角形的穩(wěn)定性固定門框.故選:D.【點睛】此題考查了三角形的穩(wěn)定性,解題的關(guān)鍵是看圖找出三角形.一、單選題1.三角形的高線、中線、角平分線都是()A.直線 B.線段 C.射線 D.以上情況都有【答案】B【分析】根據(jù)三角形高線、中線、角平分線的定義作出判斷.【詳解】三角形的高線、角平分線和中線都是線段,故選B.【點睛】本題考查了三角形的角平分線、中線和高,熟記定義即可作出正確的判斷,屬于基礎(chǔ)題.2.如圖所示的圖形中,以BC為邊的三角形共有(
)A.1個 B.2個 C.3個 D.4個【答案】D【分析】根據(jù)三角形的定義(由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形)找出圖中的三角形.【詳解】解:以BC為邊的三角形有△BCE,△BAC,△DBC,△BFC,故選D.【點睛】本題考查了三角形的定義,解題關(guān)鍵是注意:題目要求找“圖中以BC為邊的三角形的個數(shù)”,而不是找“圖中三角形的個數(shù)”.3.下列說法:(1)一個等邊三角形一定不是鈍角三角形;(2)一個鈍角三角形一定不是等腰三角形;(3)一個等腰三角形一定不是銳角三角形;(4)一個直角三角形一定不是等腰三角形.其中正確的有(
)個A.1 B.2 C.3 D.4【答案】A【分析】根據(jù)三角形的分類判斷即可.【詳解】解:(1)一個等邊三角形一定不是鈍角三角形,原說法正確;(2)一個鈍角三角形不一定不是等腰三角形,原說法錯誤;(3)一個等腰三角形不一定不是銳角三角形,原說法錯誤;(4)一個直角三角形不一定不是等腰三角形,原說法錯誤;故選:A.【點睛】此題考查三角形問題,關(guān)鍵是根據(jù)三角形的分類的概念解答.4.下列各組線段能組成一個三角形的是(
)A. B. C. D.【答案】C【分析】根據(jù)三角形邊的性質(zhì):較小兩邊之和大于最大邊,逐一判斷.【詳解】A:3+5<10,不能組成三角形,故A錯誤;B:5+4=9,不能組成三角形,故B錯誤;C:4+6>9,能組成三角形,故C正確;D:4+6=10,不能組成三角形,故D錯誤.故答案選擇C.【點睛】本題主要考查了三角形三邊的性質(zhì),熟練掌握較小兩邊之和大于最大邊,較大兩邊之差小于最小邊,是解決問題的關(guān)鍵.5.一個三角形的兩條邊的長為5和7,若三角形周長為偶數(shù),那么第三邊的長可能是(
)A.2 B.4 C.7 D.14【答案】B【分析】利用三角形三邊關(guān)系定理,先確定第三邊的范圍,進(jìn)而就可以求出第三邊的長.【詳解】設(shè)第三邊為a,根據(jù)三角形的三邊關(guān)系知,2<a<12.由于這個三角形的周長為a+12,而且周長是偶數(shù),∴a為偶數(shù),可以為4、6、8、10.故選:B.【點睛】本題從邊的方面考查三角形形成的條件:任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,當(dāng)題目指代不明時,一定要分情況討論,把符合條件的保留下來,不符合的舍去.6.下列說法中:①如果,那么;②關(guān)于的不等式的解集是,則;③的正整數(shù)解有無窮個;④若是三角形的三邊長,則化簡:的結(jié)果是;⑤若是自然數(shù),則滿足條件的正整數(shù)有6個.正確的說法個數(shù)是(
)A.1 B.2 C.3 D.4【答案】B【分析】根據(jù)等式的性質(zhì)分析判斷說法①;根據(jù)不等式的性質(zhì)分析判斷說法②;根據(jù)不等式的定義以及正整數(shù)的概念分析判斷說法③;結(jié)合三角形三邊關(guān)系關(guān)鍵絕對值,即可分析判斷說法④;根據(jù)正整數(shù)的概念分析判斷說法⑤.即可獲得答案.【詳解】解:①如果,由等式性質(zhì)可知,當(dāng)時,才有,故該說法錯誤;②若關(guān)于的不等式的解集是,則,所以,故該說法正確;③的正整數(shù)解有1,2,3,4,共計4個,故該說法錯誤;④若是三角形的三邊長,則,故該說法正確;⑤若是自然數(shù),即且是12的約數(shù),則滿足條件的正整數(shù)有2,3,4,5,共計4個,故該說法錯誤.綜上所述,正確的說法有②④,共計2個.故選:B.【點睛】本題主要考查了等式的性質(zhì)、不等式的性質(zhì)、三角形三邊關(guān)系、化簡絕對值以及正整數(shù)和自然數(shù)等知識,熟練掌握相關(guān)知識是解題關(guān)鍵.7.人字梯中間一般會設(shè)計一“拉桿”,這樣做的道理是(
).A.三角形具有穩(wěn)定性. B.兩直線平行,內(nèi)錯角相等.C.兩點之間,線段最短. D.垂線段最短.【答案】A【分析】根據(jù)三角形的穩(wěn)定性解答即可.【詳解】解:人字梯中間一般會設(shè)計一“拉桿”,是為了形成三角形,利用三角形具有穩(wěn)定性來增加其穩(wěn)定性,故選:A.【點睛】題考查了三角形的性質(zhì),關(guān)鍵是根據(jù)三角形的穩(wěn)定性解答.8.如圖,,分別為的中線和高線,的面積為5,,則的長為()A.5 B.3 C.4 D.6【答案】A【分析】首先利用中線的性質(zhì)可以求出的面積,然后利用三角形的面積公式即可求解.【詳解】解:∵為的中線,∴,∵的面積為5,∴,∵為的高線,,∴,∴.故選:A.【點睛】題主要考查了三角形的面積,同時也利用了三角形的中線的性質(zhì),有一定的綜合性.9.在△ABC中,AD、AE、AF分別是它的高線、角平分線和中線,則下列說法中錯誤的是()A. B. C. D.【答案】B【分析】根據(jù)中線定義可判定A,根據(jù)當(dāng)高AD與邊AC重合時,則可判定B;根據(jù)垂直線段最短可判定C;根據(jù)中線定義可知BC=2BF,利用等高的三角形面積與底的關(guān)系可判定D.【詳解】解:A、∵在△ABC中,AF是△ABC的中線,∴BF=CF,正確,故此選項不符合題意;B、∵在△ABC中,AD是△ABC的高,當(dāng)高AD與邊AC重合時,如圖,則,故錯誤,故此選項符合題意;C、∵在△ABC中,AD是△ABC的高,AE是角平分線,根據(jù)垂直線段最短,∴AD≤AE,正確,故此選項不符合題意;D、∵在△ABC中,AF是△ABC的中線,∴BC=2BF,∵S△ABC=,S△ABF=,∴,正確,故此選項不符合題意;故選:B.【點睛】本題考查三角形的高、中線、角平分線,熟練掌握三角形的高、中線、角平分線的定義與性質(zhì)是解題的關(guān)鍵.10.如圖,O是△ABC的重心,則圖中與△ABD面積相等的三角形個數(shù)為()A.3 B.4 C.5 D.6【答案】C【分析】根據(jù)題干條件D、E、F為△ABC三邊的中點,故得BD=CD,又知△ABD與△ADC的高相等,于是得到△ABD與△ACD的面積相等并且為△ABC面積的一半,同理可得△CBE與△ABE,△ACF與△BCF面積相等,并且都為△ABC面積的一半,即可求出與△ABD面積相等的三角形個數(shù).【詳解】∵O是△ABC的重心,∴BD=CD,又∵△ABD與△ADC的高相等,∴△ABD與△ACD的面積相等=S△ABC,同理可知:△CBE與△ABE,△ACF與△BCF面積相等,并且都為△ABC面積的一半,∴圖中與△ABD面積相等的三角形個數(shù)為5個,故選C.【點睛】本題主要考查三角形面積、重心的性質(zhì)及等積變換的知識點,解答本題的關(guān)鍵是熟練掌握三角形的面積=底×高,此題難度一般.11.如圖,嘉琪任意剪了一張鈍角三角形紙片(是鈍角),他打算用折疊的方法折出的角平分線、邊上的中線和高線,能折出的是()A.邊上的中線和高線 B.的角平分線和邊上的高線C.的角平分線和邊上的中線 D.的角平分線、邊上的中線和高線【答案】C【分析】由折疊的性質(zhì)可求解.【詳解】解:當(dāng)與重合時,折痕是的角平分線;當(dāng)點A與點B重合時,折疊是的中垂線,故選:C.【點睛】本題考查了翻折變換,掌握折疊的性質(zhì)是本題的關(guān)鍵.12.如圖,在四邊形中,已知點是上的一點且滿足,連接,在上取一點且,點是的中點,且,連接、,若四邊形的面積為15,且,則中邊上的高為()A.4 B.5 C. D.無法確定【答案】B【分析】根據(jù)中線平分面積,得到,利用同高,得到,根據(jù),得到,進(jìn)而求出,再根據(jù),,求出,利用面積公式,求出邊上的高即可.【詳解】解:,是的中點,,,,,四邊形的面積為15,,,,,,中邊上的高為:.故選B.【點睛】本題考查三角形的中線和高線.熟練掌握中線平分面積,同高的三角形的面積比等于底邊比,是解題的關(guān)鍵.二、填空題13.三角形的兩邊長分別是2、7,若第三邊長為奇數(shù),則此三角形第三邊的長是______.【答案】7【分析】首先設(shè)第三邊長為x,根據(jù)三角形的三邊關(guān)系可得,然后再確定x的值即可.【詳解】解:設(shè)第三邊長為x,∵兩邊長分別是2和7,∴,即:,∵第三邊長為奇數(shù),∴,故答案為:7.【點睛】此題主要考查了三角形的三邊關(guān)系,關(guān)鍵是掌握三角形兩邊之和大于第三邊,三角形的兩邊差小于第三邊.14.已知a,b,c為△ABC的三邊,且a,b滿足關(guān)系式,若的周長為偶數(shù),則的周長為__________.【答案】8【分析】根據(jù)非負(fù)數(shù)的性質(zhì)列式求出a、b的值,再根據(jù)三角形的任意兩邊之和大于第三邊,兩邊之差小于第三邊求出c的取值范圍,再根據(jù)c是奇數(shù)求出c的值.【詳解】解:∵a,b滿足,∴,,解得,∵,,∴,∵的周長為偶數(shù),即是偶數(shù),∴是偶數(shù),∴為奇數(shù),∴,∴的周長為:.故答案為:8.【點睛】本題考查了絕對值、平方的非負(fù)性,三角形的三邊關(guān)系等知識點.解題的關(guān)鍵是確定邊長c的取值范圍.15.已知a,b,c是三邊的長,化簡_____.【答案】【分析】根據(jù)三角形的三邊關(guān)系判斷出,再去絕對值符號,合并同類項即可.【詳解】解:∵a、b、c是△ABC的三邊的長,∴,∴原式.故答案為.【點睛】本題考查的是三角形三邊關(guān)系,熟知三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答此題的關(guān)鍵.16.在中,點,分別在,上,且與相交于點,已知的面積為,的面積為,的面積為,則四邊形的面積為__.【答案】【分析】設(shè),可得,,解出的值,再根據(jù)即可求解.【詳解】解:設(shè),連接,
,∴,,,又,,,解得,∴,,故答案為:.【點睛】本題主要考查三角形面積與線段比的關(guān)系,掌握面積與線段的關(guān)系,列出方程是解題的關(guān)鍵.17.的面積為42平方米,點D,E,F(xiàn)分別在邊上,且,,,分別連結(jié),如圖所示,圖中陰影部分的面積為6平方米,若在甲,乙區(qū)域鋪設(shè)瓷磚,瓷磚均價分別為300元/平方米,200元/平方米,則甲、乙區(qū)域鋪設(shè)瓷磚總價為______元.【答案】7800【分析】設(shè)三個乙區(qū)域的面積分別為平方米,平方米,平方米,根據(jù)同高三角形面積的比等于對應(yīng)底邊的比可得:,平方米,根據(jù)面積和可得乙區(qū)域的面積和,可得甲區(qū)域的面積,從而得結(jié)論.【詳解】解:如圖所示,設(shè)三個乙區(qū)域的面積分別為平方米,平方米,平方米,
∵,∴,∵的面積為42平方米,∴平方米,同理可得:平方米,∵,∴,∵圖中陰影部分的面積為6平方米,即,∴,∴,∴甲、乙區(qū)域鋪設(shè)瓷磚總價(元).故答案為:7800.【點睛】本題考查了三角形和四邊形的面積,本題綜合性強(qiáng),熟練掌握同高三角形面積的比等于對應(yīng)底邊的比是解題的關(guān)鍵.18.如圖,是的中線,是的中線,若,則_____.【答案】12【分析】根據(jù)是的中線,是的中線,得到,再根據(jù),即可得到答案.【詳解】解:∵是的中線,是的中線,∴,∴.∵,∴故答案為:12.【點睛】本題考查中線的性質(zhì),解題的關(guān)鍵是熟練掌握中線的相關(guān)知識.19.如圖,在中,E是上的一點,,點D是的中點,且,則________.【答案】【分析】根據(jù)高相同時,三角形面積比等于底邊之比,分別求出,再根據(jù)、,用兩式相減即得所求的值.【詳解】∵,D是的中點,∴,∵,∴,∴,∴,故答案為:.【點睛】本題考查了三角形的面積,靈活運(yùn)用高相同時面積與邊的關(guān)系,巧用兩個三角形面積中公共部分來轉(zhuǎn)換成所求面積差是解題的關(guān)鍵.20.如圖,點C為直線外一動點,,連接,點D、E分別是的中點,連接交于點F,當(dāng)四邊形的面積為5時,線段長度的最小值為______.【答案】5【分析】如圖:連接,過點C作于點H,根據(jù)三角形中線的性質(zhì)求得,從而求得,利用垂線段最短求解即可.【詳解】解:如圖:連接,過點C作于點H,
∵點D、E分別是的中點,∴,,,∴,,∴,∴,∴,∴,又∵點到直線的距離垂線段最短,∴,∴的最小值為.故答案為:5.【點睛】本題考查了三角形中線的性質(zhì)、垂線段最短等知識點,正確
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年贛州職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性測試題庫審定版
- 2025年吉林工業(yè)職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫參考答案
- 第二課 創(chuàng)新驅(qū)動發(fā)展 教學(xué)設(shè)計-2023-2024學(xué)年統(tǒng)編版道德與法治九年級上冊(兩課時)
- 輸電線路帶電作業(yè)資格復(fù)習(xí)題+答案
- 2025年貴陽職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫帶答案
- 人教版一年級數(shù)學(xué)5單元
- 第1課《人民解放軍百萬大軍橫渡長江》教學(xué)設(shè)計-2024-2025學(xué)年統(tǒng)編版語文八年級上冊
- 2024年中考化學(xué)計算題和生產(chǎn)流程題解題技巧教學(xué)設(shè)計
- 《四、文件的壓縮與解壓縮》教學(xué)設(shè)計 -2024-2025學(xué)年初中信息技術(shù)人教版七年級上冊
- 15 我與地壇(教學(xué)設(shè)計)-2024-2025學(xué)年高一語文上學(xué)期同步教學(xué)教學(xué)設(shè)計專輯(統(tǒng)編版必修上冊)
- 1.1青春的邀約 教學(xué)課件 2024-2025學(xué)年七年級道德與法治下冊(統(tǒng)編版2024)
- 2024年財政部會計法律法規(guī)答題活動題目及答案一
- 2024年01月廣州期貨交易所2024年招考筆試歷年參考題庫附帶答案詳解
- 中小學(xué)教師家訪記錄表內(nèi)容(18張)8
- 中山市培養(yǎng)引進(jìn)緊缺適用人才導(dǎo)向目錄(2011-2012年)
- 小學(xué)三年級下冊開學(xué)語文老師家長會發(fā)言
- 對講機(jī)測試報告
- 3、分段計費問題
- 防滲墻專項施工方法
- 執(zhí)業(yè)(助理)醫(yī)師資格證書遺失補(bǔ)辦申請表
- 精品資料(2021-2022年收藏)垃圾焚燒發(fā)電廠監(jiān)理規(guī)劃
評論
0/150
提交評論