版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
貴州省銅仁市石阡民族中學2024屆高一上數(shù)學期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.給定下列四個命題:①若一個平面內(nèi)的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經(jīng)過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直其中,為真命題的是A.①和② B.②和③C.③和④ D.②和④2.函數(shù)的圖象大致是()A. B.C. D.3.是邊AB上的中點,記,,則向量A. B.C. D.4.已知△ABC的平面直觀圖△A′B′C′是邊長為a的正三角形,那么原△ABC的面積為()A. B.C. D.5.如圖,摩天輪上一點在時刻距離地面的高度滿足,,,,已知某摩天輪的半徑為50米,點距地面的高度為60米,摩天輪做勻速運動,每10分鐘轉(zhuǎn)一圈,點的起始位置在摩天輪的最低點,則(米)關于(分鐘)的解析式為()A.() B.()C.() D.()6.已知函數(shù),有下面四個結論:①的一個周期為;②的圖像關于直線對稱;③當時,的值域是;④在(單調(diào)遞減,其中正確結論的個數(shù)是()A.1 B.2C.3 D.47.函數(shù)的零點所在的大致區(qū)間是()A. B.C. D.8.已知向量,且,則A. B.C.2 D.-29.已知函數(shù)(為自然對數(shù)的底數(shù)),若對任意,不等式都成立,則實數(shù)的取值范圍是A. B.C. D.10.已知集合,,則A∩B中元素的個數(shù)為()A.2 B.3C.4 D.5二、填空題:本大題共6小題,每小題5分,共30分。11.已知冪函數(shù)的圖象過點______12.給定函數(shù)y=f(x),設集合A={x|y=f(x)},B={y|y=f(x)}.若對于?x∈A,?y∈B,使得x+y=0成立,則稱函數(shù)f(x)具有性質(zhì)P.給出下列三個函數(shù):①;②;③y=lgx.其中,具有性質(zhì)P的函數(shù)的序號是_____13.設函數(shù)即_____14.已知函數(shù),若方程有4個不同的實數(shù)根,則的取值范圍是____15.已知,,,則________16.已知直線與圓相切,則的值為________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(a>0且)是偶函數(shù),函數(shù)(a>0且)(1)求b的值;(2)若函數(shù)有零點,求a的取值范圍;(3)當a=2時,若,使得恒成立,求實數(shù)m的取值范圍18.設函數(shù)是定義在上的奇函數(shù),當時,(1)確定實數(shù)的值并求函數(shù)在上的解析式;(2)求滿足方程的的值.19.已知函數(shù)⑴判斷并證明函數(shù)的奇偶性;⑵若,求實數(shù)的值.20.已知的三個頂點分別為,,.(1)求AB邊上的高所在直線的方程;(2)求面積.21.如圖,已知正三棱柱的底面邊長為2,側(cè)棱長為,點E在側(cè)棱上,點F在側(cè)棱上,且(1)求證:;(2)求二面角的大小
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】利用線面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對四個命題分別分析進行選擇【詳解】當兩個平面相交時,一個平面內(nèi)的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內(nèi)與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查空間想象能力,是中檔題2、B【解析】根據(jù)函數(shù)的奇偶性和正負性,運用排除法進行判斷即可.【詳解】因為,所以函數(shù)是偶函數(shù),其圖象關于縱軸對稱,故排除C、D兩個選項;顯然,故排除A,故選:B3、C【解析】由題意得,∴.選C4、C【解析】根據(jù)直觀圖的面積與原圖面積的關系為,計算得到答案.【詳解】直觀圖的面積,設原圖面積,則由,得.故選:C.【點睛】本題考查了平面圖形的直觀圖的面積與原面積的關系,三角形的面積公式,屬于基礎題.5、B【解析】根據(jù)給定信息,依次計算,再代入即可作答.【詳解】因函數(shù)最大值為110,最小值為10,因此有,解得,而函數(shù)的周期為10,即,則,又當時,,則,而,解得,所以.故選:B6、B【解析】函數(shù)周期.,故是函數(shù)的對稱軸.由于,故③錯誤.,函數(shù)在不單調(diào).故有個結論正確.【點睛】本題主要考查三角函數(shù)圖像與性質(zhì),包括了周期性,對稱性,值域和單調(diào)性.三角函數(shù)的周期性,其中正弦和余弦函數(shù)的周期都是利用公式來求解,而正切函數(shù)函數(shù)是利用公式來求解.三角函數(shù)的對稱軸是使得函數(shù)取得最大值或者最小值的地方.對于選擇題7、C【解析】由題意,函數(shù)在上連續(xù)且單調(diào)遞增,計算,,根據(jù)零點存在性定理判斷即可【詳解】解:函數(shù)在上連續(xù)且單調(diào)遞增,且,,所以所以的零點所在的大致區(qū)間是故選:8、A【解析】由于兩個向量垂直,故有.故選:A9、C【解析】由題意結合函數(shù)的單調(diào)性和函數(shù)的奇偶性求解不等式即可.【詳解】由函數(shù)的解析式可知函數(shù)為定義在R上的增函數(shù),且函數(shù)為奇函數(shù),故不等式即,據(jù)此有,即恒成立;當時滿足題意,否則應有:,解得:,綜上可得,實數(shù)的取值范圍是.本題選擇C選項.【點睛】對于求值或范圍的問題,一般先利用函數(shù)的奇偶性得出區(qū)間上的單調(diào)性,再利用其單調(diào)性脫去函數(shù)的符號“f”,轉(zhuǎn)化為解不等式(組)的問題.10、B【解析】采用列舉法列舉出中元素的即可.【詳解】由題意,,故中元素的個數(shù)為3.故選:B【點晴】本題主要考查集合的交集運算,考查學生對交集定義的理解,是一道容易題.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】利用冪函數(shù)的定義先求出其解析式,進而得出答案【詳解】設冪函數(shù)為常數(shù),冪函數(shù)的圖象過點,,解得故答案為3【點睛】本題考查冪函數(shù)的定義,正確理解冪函數(shù)的定義是解題的關鍵12、①③【解析】A即為函數(shù)的定義域,B即為函數(shù)的值域,求出每個函數(shù)的定義域及值域,直接判斷即可【詳解】對①,A=(﹣∞,0)∪(0,+∞),B=(﹣∞,0)∪(0,+∞),顯然對于?x∈A,?y∈B,使得x+y=0成立,即具有性質(zhì)P;對②,A=R,B=(0,+∞),當x>0時,不存在y∈B,使得x+y=0成立,即不具有性質(zhì)P;對③,A=(0,+∞),B=R,顯然對于?x∈A,?y∈B,使得x+y=0成立,即具有性質(zhì)P;故答案為:①③【點睛】本題以新定義為載體,旨在考查函數(shù)的定義域及值域,屬于基礎題13、-1【解析】結合函數(shù)的解析式求解函數(shù)值即可.【詳解】由題意可得:,則.【點睛】求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當出現(xiàn)f(f(a))的形式時,應從內(nèi)到外依次求值14、【解析】先畫出函數(shù)的圖象,把方程有4個不同的實數(shù)根轉(zhuǎn)化為函數(shù)的圖象與有四個不同的交點,結合對數(shù)函數(shù)和二次函數(shù)的性質(zhì),即可求解.【詳解】由題意,函數(shù),要先畫出函數(shù)的圖象,如圖所示,又由方程有4個不同的實數(shù)根,即函數(shù)的圖象與有四個不同的交點,可得,且,則=,因為,則,所以.故答案為.【點睛】本題主要考查了函數(shù)與方程的綜合應用,其中解答中把方程有4個不同的實數(shù)根,轉(zhuǎn)化為兩個函數(shù)的有四個交點,結合對數(shù)函數(shù)與二次函數(shù)的圖象與性質(zhì)求解是解答的關鍵,著重考查了數(shù)形結合思想,以及推理與運算能力,屬于中檔試題.15、【解析】由誘導公式將化為,再由,根據(jù)兩角差的正弦公式,即可求出結果.【詳解】因,所以,,又,,所以,,所以,,所以.故答案為【點睛】本題主要考查簡單的三角恒等變換,熟記兩角差的正弦公式以及誘導公式,即可求解,屬于??碱}型.16、2【解析】直線與圓相切,圓心到直線的距離等于半徑,列出方程即可求解的值【詳解】依題意得,直線與圓相切所以,即,解得:,又,故答案為:2三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】(1)根據(jù)f(x)為偶函數(shù),由f(-x)=-f(x),即對恒成立求解;(2)由有零點,轉(zhuǎn)化為有解,令,轉(zhuǎn)化為函數(shù)y=p(x)圖象與直線y=a有交點求解;(3)根據(jù),使得成立,由求解.【小問1詳解】解:因f(x)為偶函數(shù),所以,都有f(-x)=-f(x),即對恒成立,對恒成立,對恒成立,所以【小問2詳解】因為有零點即有解,即有解令,則函數(shù)y=p(x)圖象與直線y=a有交點,當0<a<1時,無解;當a>1時,在上單調(diào)遞減,且,所以在上單調(diào)遞減,值域為由有解,可得a>0,此時a>1,綜上可知,a的取值范圍是;【小問3詳解】,當時,,由(2)知,當且僅當時取等號,所以的最小值為1,因為,使得成立,所有,即對任意的恒成立,設,所以當t>1時,恒成立,即,對t>1恒成立,設函數(shù)在單調(diào)遞減,所以,所以m≥0,即實數(shù)m的取值范圍為18、(1),(2)或或【解析】(1)利用奇函數(shù)定義即可得到的值及函數(shù)在上的解析式;(2)分成兩類,解指數(shù)型方程即可得到結果.【詳解】(1)是定義在上的奇函數(shù)當時,,當時,設,則(2)當時,,令,得得解得是定義在上的奇函數(shù)所以當x<0時的根為:所以方程的根為:【點睛】(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當出現(xiàn)f(f(a))的形式時,應從內(nèi)到外依次求值(2)當給出函數(shù)值求自變量的值時,先假設所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應自變量的值,切記要代入檢驗,看所求的自變量的值是否滿足相應段自變量的取值范圍19、(1)(2)【解析】(1)求出函數(shù)的定義域,利用函數(shù)的奇偶性的定義判斷即可;(2)是奇函數(shù),則結合,求解代入求解即可.【詳解】(1)解:是奇函數(shù).證明:要等價于即故的定義域為設任意則又因為所以是奇函數(shù).(2)由(1)知,是奇函數(shù),則聯(lián)立得即解得20、(1);(2).【解析】(1)根據(jù)高線的性質(zhì),結合互相垂直直線的斜率關系,結合直線點斜式方程進行求解即可;(2)根據(jù)點到直線距離公式、兩點間距離公式、三角形面積公式進行求解即可.【小問1詳解】∵,,∴AB的斜率,∴AB邊高線斜率,又,∴AB邊上的高線方程為,化簡得.【小問2詳解】直線AB的方程為,即,頂點C到直線AB的距離為,又,∴的面積.21、(1)證明見解析;(2).【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)定制塑鋼窗戶采購協(xié)議示例(2024年度)版B版
- 二零二五年度瓷磚行業(yè)環(huán)保設施建設合同3篇
- 2025年度教育課程策劃開發(fā)合同范本4篇
- 2025年度智慧社區(qū)場商位租賃及社區(qū)服務合同4篇
- 2025年度文化旅游區(qū)場地承包經(jīng)營與開發(fā)合同模板3篇
- 2025年度現(xiàn)代化廠房施工建設合同(新版)4篇
- 2024年貨物買賣合同跨境電商條款
- 2025年度叉車租賃與租賃物租賃期限續(xù)簽合同4篇
- 專屬校車司機招聘協(xié)議:2024年版詳盡協(xié)議版B版
- 2024贊助合同書范本:展覽贊助合作協(xié)議3篇
- 小學一年級20以內(nèi)加減法混合運算3000題(已排版)
- 智慧工廠數(shù)字孿生解決方案
- 病機-基本病機 邪正盛衰講解
- 品管圈知識 課件
- 非誠不找小品臺詞
- 2024年3月江蘇省考公務員面試題(B類)及參考答案
- 患者信息保密法律法規(guī)解讀
- 老年人護理風險防控PPT
- 充電樁采購安裝投標方案(技術方案)
- 醫(yī)院科室考勤表
- 鍍膜員工述職報告
評論
0/150
提交評論