貴州省銅仁市思南中學2023-2024學年高一上數(shù)學期末教學質量檢測試題含解析_第1頁
貴州省銅仁市思南中學2023-2024學年高一上數(shù)學期末教學質量檢測試題含解析_第2頁
貴州省銅仁市思南中學2023-2024學年高一上數(shù)學期末教學質量檢測試題含解析_第3頁
貴州省銅仁市思南中學2023-2024學年高一上數(shù)學期末教學質量檢測試題含解析_第4頁
貴州省銅仁市思南中學2023-2024學年高一上數(shù)學期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

貴州省銅仁市思南中學2023-2024學年高一上數(shù)學期末教學質量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.過點,且圓心在直線上的圓的方程是()A. B.C. D.2.要證明命題“所有實數(shù)的平方都是正數(shù)”是假命題,只需()A.證明所有實數(shù)的平方都不是正數(shù)B.證明平方是正數(shù)的實數(shù)有無限多個C.至少找到一個實數(shù),其平方是正數(shù)D.至少找到一個實數(shù),其平方不是正數(shù)3.已知集合,,則()A. B.C. D.4.已知向量,,且,那么()A.2 B.-2C.6 D.-65.下列函數(shù)中,既是奇函數(shù),又在區(qū)間上單調遞增的是()A. B.C D.6.已知定義在上的奇函數(shù)滿足,且當時,,則()A. B.C. D.7.函數(shù)的一個零點是()A. B.C. D.8.設,,,則的大小關系是()A B.C. D.9.已知,,,則,,的大小關系為()A. B.C. D.10.下列函數(shù)中,既是偶函數(shù),又在區(qū)間上單調遞減的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若命題p是命題“”的充分不必要條件,則p可以是___________.(寫出滿足題意的一個即可)12.若函數(shù)在區(qū)間[2,3]上的最大值比最小值大,則__________.13.已知對于任意x,y均有,且時,,則是_____(填奇或偶)函數(shù)14.在中,邊上的中垂線分別交于點若,則_______15.已知,若方程恰有個不同的實數(shù)解、、、,且,則______16.已知函數(shù)(且)的圖象過定點,則點的坐標為______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在平面直角坐標系中,為坐標原點,已知兩點、在軸的正半軸上,點在軸的正半軸上.若,()求向量,夾角的正切值()問點在什么位置時,向量,夾角最大?18.如圖5,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點.(Ⅰ)證明:CD⊥平面PAE;(Ⅱ)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐P-ABCD的體積.19.旅游社為某旅游團包飛機去旅游,其中旅行社的包機費為15000元.旅游團中每人的飛機票按以下方式與旅行社結算:若旅游團人數(shù)在30人或30人以下,飛機票每張收費900元;若旅游團人數(shù)多于30人,則給予優(yōu)惠,每多1人,機票費每張減少10元,但旅游團人數(shù)最多為75人(1)寫出飛機票的價格關于旅游團人數(shù)的函數(shù);(2)旅游團人數(shù)為多少時,旅行社可獲得最大利潤?20.已知函數(shù)是上的奇函數(shù).(1)求的值;(2)比較與0的大小,并說明理由.21.某生物研究者于元旦在湖中放入一些鳳眼蓮,這些鳳眼蓮在湖中的蔓延速度越來越快,二月底測得鳳眼蓮覆蓋面積為24m2,三月底測得覆蓋面積為36m2,鳳眼蓮覆蓋面積y(單位:m2)與月份x(單位:月)的關系有兩個函數(shù)模型與可供選擇(1)試判斷哪個函數(shù)模型更合適,并求出該模型的解析式;(2)求鳳眼蓮覆蓋面積是元旦放入面積10倍以上的最小月份(參考數(shù)據(jù):lg2≈03010,lg3≈0.4771)

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由題設得的中垂線方程為,其與交點即為所求圓心,并應用兩點距離公式求半徑,寫出圓的方程即可.【詳解】由題設,的中點坐標為,且,∴的中垂線方程為,聯(lián)立,∴,可得,即圓心為,而,∴圓的方程是.故選:B2、D【解析】全稱命題是假命題,則其否定一定是真命題,判斷選項.【詳解】命題“所有實數(shù)的平方都是正數(shù)”是全稱命題,若其為假命題,那么命題的否定是真命題,所以只需“至少找到一個實數(shù),其平方不是正數(shù).故選:D3、A【解析】由已知得,因為,所以,故選A4、B【解析】根據(jù)向量共線的坐標表示,列出關于m的方程,解得答案.【詳解】由向量,,且,可得:,故選:B5、你6、C【解析】先推導出函數(shù)的周期為,可得出,然后利用函數(shù)的奇偶性結合函數(shù)的解析式可計算出結果.【詳解】函數(shù)是上的奇函數(shù),且,,,所以,函數(shù)的周期為,則.故選:C.【點睛】本題考查利用函數(shù)的奇偶性和周期求函數(shù)值,解題的關鍵就是推導出函數(shù)的周期,考查計算能力,屬于中等題.7、B【解析】根據(jù)正弦型函數(shù)的性質,函數(shù)的零點,即時的值,解三角方程,即可求出滿足條件的的值【詳解】解:令函數(shù),則,則,當時,.故選:B8、C【解析】詳解】,即,選.9、B【解析】通過計算可知,,,從而得出,,的大小關系.【詳解】解:因為,所以,,所以.故選:B.10、D【解析】依次判斷4個選項的單調性及奇偶性即可.【詳解】對于A,在區(qū)間上單調遞增,錯誤;對于B,,由得,單調遞增,錯誤;對于C,當時,沒有意義,錯誤;對于D,為偶函數(shù),且在時,單調遞減,正確.故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、,(答案不唯一)【解析】由充分條件和必要條件的定義求解即可【詳解】因為當時,一定成立,而當時,可能,可能,所以是的充分不必要條件,故答案為:(答案不唯一)12、【解析】函數(shù)在上單調遞增,∴解得:故答案為13、奇函數(shù)【解析】賦值,可求得,再賦值即可得到,利用奇偶性的定義可判斷奇偶性;【詳解】,令,得,,再令,得,是上的奇函數(shù);【點睛】本題考查了賦值法及奇函數(shù)的定義14、4【解析】設,則,,又,即,故答案為.15、【解析】作出函數(shù)的圖象以及直線的圖象,利用對數(shù)的運算可求得的值,利用正弦型函數(shù)的對稱性可求得的值,即可得解.【詳解】作出函數(shù)的圖象以及直線的圖象如下圖所示:由圖可知,由可得,即,所以,,可得,當時,,由,可得,由圖可知,點、關于直線對稱,則,因此,.故答案為:.16、【解析】令,結合對數(shù)的運算即可得出結果.【詳解】令,得,又因此,定點的坐標為故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析.【解析】分析:()設向量與軸的正半軸所成的角分別為,則向量所成的夾角為,由兩角差的正切公式可得向量夾角的正切值為;()由(1)知,利用基本不等式即可的結果.詳解:(1)由題意知,A的坐標為A(0,6),B的坐標為B(0,4),C(x,0),x>0設向量,與x軸的正半軸所成的角分別為α,β,則向量,所成的夾角為|β﹣α|=|α﹣β|,由三角函數(shù)的定義知:tanα=,tanβ=,由公式tan(α﹣β)=,得向量,的夾角的正切值等于tan(α﹣β)==,故所求向量,夾角的正切值為tan(α﹣β)=;(2)由(1)知tan(α﹣β)==≤=,所以tan(α﹣β)的最大值為時,夾角|α﹣β|的值也最大,當x=時,取得最大值成立,解得x=2,故點C在x的正半軸,距離原點為2,即點C的坐標為C(2,0)時,向量,夾角最大點睛:本題主要考查利用平面向量的夾角、兩角差的正切公式以及基本不等式求最值,屬于難題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最小);三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)否在定義域內,二是多次用或時等號能否同時成立).18、(1)證明略(2)【解析】(Ⅰ)要證平面,由已知平面,已經有,因此在直角梯形中證明即可,通過計算得,而是中點,則有;(Ⅱ)PB與平面ABCD所成的角是,下面關鍵是作出PB與平面PAE所成的角,由(Ⅰ)作,分別與相交于,連接,則是PB與平面PAE所成的角,由這兩個角相等,可得,同樣在直角梯形中可計算出,也即四棱錐P-ABCD的高,體積可得.另外也可建立空間直角坐標系,通過空間向量法求得結論,第(Ⅱ)小題中關鍵是求點的坐標,注意這里直線與平面所成的角相等轉化為直線與平面的法向量的夾角相等試題解析:解法1(Ⅰ如圖(1)),連接AC,由AB=4,,是的中點,所以所以而內的兩條相交直線,所以CD⊥平面PAE(Ⅱ)過點B作由(Ⅰ)CD⊥平面PAE知,BG⊥平面PAE.于是為直線PB與平面PAE所成的角,且由知,為直線與平面所成的角由題意,知因為所以由所以四邊形是平行四邊形,故于是在中,所以于是又梯形的面積為所以四棱錐的體積為解法2:如圖(2),以A為坐標原點,所在直線分別為建立空間直角坐標系.設則相關的各點坐標為:(Ⅰ)易知因為所以而是平面內的兩條相交直線,所以(Ⅱ)由題設和(Ⅰ)知,分別是,的法向量,而PB與所成的角和PB與所成的角相等,所以由(Ⅰ)知,由故解得又梯形ABCD的面積為,所以四棱錐的體積為.考點:線面垂直的判斷,棱錐的體積19、(1).(2)旅游團人數(shù)為60時,旅行社可獲得最大利潤【解析】(1)根據(jù)自變量的取值范圍,分0或,確定每張飛機票價的函數(shù)關系式;(Ⅱ)利用所有人的費用減去包機費就是旅行社可獲得的利潤,結合自變量的取值范圍,可得利潤函數(shù),結合自變量的取值范圍,分段求出最大利潤,從而解決問題【詳解】(1)設旅游團人數(shù)為人,飛行票價格為元,依題意,當,且時,,當,且時,y=900-10(x-30)=-10x+1200.所以所求函數(shù)為y=(2)設利潤為元,則當,且時,(元),當,且時,元,因為21000元>12000元,所以旅游團人數(shù)為60時,旅行社可獲得最大利潤【點睛】此題考查了分段函數(shù)以及實際問題中的最優(yōu)化問題,培養(yǎng)學生對實際問題分析解答能力,屬于中檔題20、(1);(2)【解析】(1)由奇函數(shù)的性質列式求解;(2)先判斷函數(shù)的單調性,然后求解,利用單調性與奇偶性即可判斷出.【小問1詳解】因為是上的奇函數(shù),所以,得時,,滿足為奇函數(shù),所以.【小問2詳解】設,則,因,所以,所以,即,所以函數(shù)在上為增函數(shù),又因為為上的奇函數(shù),所以函數(shù)在上為增函數(shù),因為,即,所以,因為是上的奇函數(shù),所以,所以【點睛】判斷復合函數(shù)的單調性時,一般利用換元法,分別判斷內函數(shù)與外函數(shù)的單調

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論