版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
專題3.3函數(shù)的奇偶性與周期性練基礎練基礎1.(2021·海南??谑小じ呷渌M)已知函數(shù)SKIPIF1<0,則“SKIPIF1<0”是“函數(shù)SKIPIF1<0為奇函數(shù)”的()A.充分而不必要條件 B.必要而不充分條件 C.充分必要條件 D.既不充分也不必要條件【答案】C【解析】化簡“SKIPIF1<0”和“函數(shù)SKIPIF1<0為奇函數(shù)”,再利用充分必要條件的定義判斷得解.【詳解】SKIPIF1<0,所以SKIPIF1<0,函數(shù)SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0.所以“SKIPIF1<0”是“函數(shù)SKIPIF1<0為奇函數(shù)”的充分必要條件.故選:C2.(2021·福建高三三模)若函數(shù)SKIPIF1<0的大致圖象如圖所示,則SKIPIF1<0的解析式可能是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】利用排除法,取特殊值分析判斷即可得答案【詳解】解:由圖可知,當SKIPIF1<0時,SKIPIF1<0,取SKIPIF1<0,則對于B,SKIPIF1<0,所以排除B,對于D,SKIPIF1<0,所以排除D,當SKIPIF1<0時,對于A,SKIPIF1<0,此函數(shù)是由SKIPIF1<0向右平移1個單位,再向上平移1個單位,所以SKIPIF1<0時,SKIPIF1<0恒成立,而圖中,當SKIPIF1<0時,SKIPIF1<0可以小于1,所以排除A,故選:C3.(2021·廣東高三其他模擬)下列函數(shù)中,既是奇函數(shù)又在區(qū)間SKIPIF1<0上單調(diào)遞增的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】利用函數(shù)奇偶性的定義和函數(shù)的解析式判斷.【詳解】A.函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,所以函數(shù)是非奇非偶函數(shù),故錯誤;B.SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故錯誤;C.因為SKIPIF1<0,所以函數(shù)是奇函數(shù),且在SKIPIF1<0上單調(diào)遞增,正確;D.因為SKIPIF1<0,所以函數(shù)是偶函數(shù),故錯誤;故選:C.4.(2021·湖南高三月考)定義函數(shù)SKIPIF1<0則下列命題中正確的是()A.SKIPIF1<0不是周期函數(shù) B.SKIPIF1<0是奇函數(shù)C.SKIPIF1<0的圖象存在對稱軸 D.SKIPIF1<0是周期函數(shù),且有最小正周期【答案】C【解析】當SKIPIF1<0為有理數(shù)時恒有SKIPIF1<0,所以SKIPIF1<0是周期函數(shù),且無最小正周期,又因為無論SKIPIF1<0是有理數(shù)還是無理數(shù)總有SKIPIF1<0,所以函數(shù)SKIPIF1<0為偶函數(shù),圖象關于SKIPIF1<0軸對稱.【詳解】當SKIPIF1<0為有理數(shù)時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0任何一個有理數(shù)SKIPIF1<0都是SKIPIF1<0的周期,SKIPIF1<0是周期函數(shù),且無最小正周期,SKIPIF1<0選項SKIPIF1<0,SKIPIF1<0錯誤,若SKIPIF1<0為有理數(shù),則SKIPIF1<0也為有理數(shù),SKIPIF1<0,若SKIPIF1<0為無理數(shù),則SKIPIF1<0也為無理數(shù),SKIPIF1<0,綜上,總有SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0為偶函數(shù),圖象關于SKIPIF1<0軸對稱,SKIPIF1<0選項B錯誤,選項C正確,故選:C5.【多選題】(2021·淮北市樹人高級中學高一期末)對于定義在R上的函數(shù)SKIPIF1<0,下列說法正確的是()A.若SKIPIF1<0是奇函數(shù),則SKIPIF1<0的圖像關于點SKIPIF1<0對稱B.若對SKIPIF1<0,有SKIPIF1<0,則SKIPIF1<0的圖像關于直線SKIPIF1<0對稱C.若函數(shù)SKIPIF1<0的圖像關于直線SKIPIF1<0對稱,則SKIPIF1<0為偶函數(shù)D.若SKIPIF1<0,則SKIPIF1<0的圖像關于點SKIPIF1<0對稱【答案】ACD【解析】四個選項都是對函數(shù)性質(zhì)的應用,在給出的四個選項中靈活的把變量x加以代換,再結合函數(shù)的對稱性、周期性和奇偶性就可以得到正確答案.【詳解】對A,SKIPIF1<0是奇函數(shù),故圖象關于原點對稱,將SKIPIF1<0的圖象向右平移1個單位得SKIPIF1<0的圖象,故SKIPIF1<0的圖象關于點(1,0)對稱,正確;對B,若對SKIPIF1<0,有SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0是一個周期為2的周期函數(shù),不能說明其圖象關于直線SKIPIF1<0對稱,錯誤.;對C,若函數(shù)SKIPIF1<0的圖象關于直線SKIPIF1<0對稱,則SKIPIF1<0的圖象關于y軸對稱,故為偶函數(shù),正確;對D,由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的圖象關于(1,1)對稱,正確.故選:ACD.6.【多選題】(2020·江蘇南通市·金沙中學高一期中)已知偶函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),則滿足SKIPIF1<0的SKIPIF1<0的取值是()A.0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【解析】根據(jù)偶函數(shù)和單調(diào)性求得不等式的解,然后判斷各選項..【詳解】由題意SKIPIF1<0,解得SKIPIF1<0,只有BC滿足.故選:BC.7.【多選題】(2021·廣東高三二模)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0都為奇函數(shù),則下列說法正確的是()A.SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù) B.SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù)C.SKIPIF1<0為奇函數(shù) D.SKIPIF1<0為奇函數(shù)【答案】BD【解析】AB選項,利用周期函數(shù)的定義判斷;CD選項,利用周期性結合SKIPIF1<0,SKIPIF1<0為奇函數(shù)判斷.【詳解】因為函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0都為奇函數(shù),所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故B正確A錯誤;因為SKIPIF1<0,且SKIPIF1<0為奇函數(shù),所以SKIPIF1<0為奇函數(shù),故D正確;因為SKIPIF1<0與SKIPIF1<0相差1,不是最小周期的整數(shù)倍,且SKIPIF1<0為奇函數(shù),所以SKIPIF1<0不為奇函數(shù),故C錯誤.故選:BD.8.(2021·吉林高三二模(文))寫出一個符合“對SKIPIF1<0,SKIPIF1<0”的函數(shù)SKIPIF1<0___________.【答案】SKIPIF1<0(答案不唯一)【解析】分析可知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且該函數(shù)為奇函數(shù),由此可得結果.【詳解】由題意可知,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且該函數(shù)為奇函數(shù),可取SKIPIF1<0.故答案為:SKIPIF1<0(答案不唯一).9.(2021·全國高三二模(理))已知SKIPIF1<0為SKIPIF1<0上的奇函數(shù),且其圖象關于點SKIPIF1<0對稱,若SKIPIF1<0,則SKIPIF1<0__________.【答案】1【解析】根據(jù)函數(shù)的對稱性及奇函數(shù)性質(zhì)求得函數(shù)周期為4,從而SKIPIF1<0.【詳解】函數(shù)關于點SKIPIF1<0對稱,則SKIPIF1<0,又SKIPIF1<0為SKIPIF1<0上的奇函數(shù),則SKIPIF1<0,因此函數(shù)的周期為4,因此SKIPIF1<0.故答案為:1.10.(2021·上海高三二模)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,函數(shù)SKIPIF1<0是奇函數(shù),且SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0【解析】通過計算SKIPIF1<0可得.【詳解】因為SKIPIF1<0是奇函數(shù),所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.練提升TIDHNEG練提升TIDHNEG1.(2021·安徽高三三模(文))若把定義域為SKIPIF1<0的函數(shù)SKIPIF1<0的圖象沿x軸左右平移后,可以得到關于原點對稱的圖象,也可以得到關于SKIPIF1<0軸對稱的圖象,則關于函數(shù)SKIPIF1<0的性質(zhì)敘述一定正確的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0是周期函數(shù) D.SKIPIF1<0存在單調(diào)遞增區(qū)間【答案】C【解析】通過舉例說明選項ABD錯誤;對于選項C可以證明判斷得解.【詳解】定義域為R的函數(shù)SKIPIF1<0的圖象沿SKIPIF1<0軸左右平移后,可以得到關于原點對稱的圖象,也可以得到關于SKIPIF1<0軸對稱的圖象,∴SKIPIF1<0的圖象既有對稱中心又有對稱軸,但SKIPIF1<0不一定具有奇偶性,例如SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0為奇函數(shù),故選項A錯誤;由SKIPIF1<0,可得函數(shù)SKIPIF1<0圖象關于SKIPIF1<0對稱,故選項B錯誤;由SKIPIF1<0時,SKIPIF1<0不存在單調(diào)遞增區(qū)間,故選項D錯誤;由已知設SKIPIF1<0圖象的一條對稱抽為直線SKIPIF1<0,一個對稱中心為SKIPIF1<0,且SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0的一個周期SKIPIF1<0,故選項C正確.故選:C2.(2021·天津高三二模)已知函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù),且滿足SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關系為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】根據(jù)對數(shù)運算性質(zhì)和對數(shù)函數(shù)單調(diào)性可得SKIPIF1<0,根據(jù)指數(shù)函數(shù)單調(diào)性可知SKIPIF1<0;利用SKIPIF1<0為減函數(shù)可知SKIPIF1<0,結合SKIPIF1<0為奇函數(shù)可得大小關系.【詳解】SKIPIF1<0,SKIPIF1<0即:SKIPIF1<0又SKIPIF1<0是定義在SKIPIF1<0上的減函數(shù)SKIPIF1<0又SKIPIF1<0為奇函數(shù)SKIPIF1<0SKIPIF1<0,即:SKIPIF1<0.故選:B.3.(2021·陜西高三三模(理))已知函數(shù)f(x)為R上的奇函數(shù),且SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則f(101)+f(105)的值為()A.3 B.2 C.1 D.0【答案】A【解析】根據(jù)函數(shù)為奇函數(shù)可求得函數(shù)的解析式,再由SKIPIF1<0求得函數(shù)f(x)是周期為4的周期函數(shù),由此可計算得選項.【詳解】解:根據(jù)題意,函數(shù)f(x)為R上的奇函數(shù),則f(0)=0,又由x∈[0,1]時,SKIPIF1<0,則有f(0)=1+a=0,解可得:a=﹣1,則有SKIPIF1<0,又由f(﹣x)=f(2+x),即f(x+2)=﹣f(x),則有f(x+4)=﹣f(x+2)=f(x),即函數(shù)f(x)是周期為4的周期函數(shù),則SKIPIF1<0,故有f(101)+f(105)=3,故選:A.4.(2021·上海高三二模)若SKIPIF1<0是R上的奇函數(shù),且SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則下列結論:①SKIPIF1<0是偶函數(shù);②對任意的x∈R都有SKIPIF1<0;③SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;④反函數(shù)SKIPIF1<0存在且在SKIPIF1<0上單調(diào)遞增.其中正確結論的個數(shù)為()A.1 B.2 C.3 D.4【答案】C【解析】根據(jù)奇函數(shù)定義以及單調(diào)性性質(zhì),及反函數(shù)性質(zhì)逐一進行判斷選擇.【詳解】對于①,由SKIPIF1<0是SKIPIF1<0上的奇函數(shù),得SKIPIF1<0,∴SKIPIF1<0,所以SKIPIF1<0是偶函數(shù),故①正確;對于②,由SKIPIF1<0是SKIPIF1<0上的奇函數(shù),得SKIPIF1<0,而SKIPIF1<0不一定成立,所以對任意的SKIPIF1<0,不一定有SKIPIF1<0,故②錯誤;對于③,因為SKIPIF1<0是SKIPIF1<0上的奇函數(shù),且SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,因此SKIPIF1<0,利用復合函數(shù)的單調(diào)性,知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故③正確.對于④,由已知得SKIPIF1<0是SKIPIF1<0上的單調(diào)遞增函數(shù),利用函數(shù)存在反函數(shù)的充要條件是,函數(shù)的定義域與值域是一一映射,且函數(shù)與其反函數(shù)在相應區(qū)間內(nèi)單調(diào)性一致,故反函數(shù)SKIPIF1<0存在且在SKIPIF1<0上單調(diào)遞增,故④正確;故選:C5.【多選題】(2021·全國高三專題練習)已知函數(shù)SKIPIF1<0是偶函數(shù),SKIPIF1<0是奇函數(shù),并且當SKIPIF1<0,SKIPIF1<0,則下列選項正確的是()A.SKIPIF1<0在SKIPIF1<0上為減函數(shù) B.SKIPIF1<0在SKIPIF1<0上SKIPIF1<0C.SKIPIF1<0在SKIPIF1<0上為增函數(shù) D.SKIPIF1<0在SKIPIF1<0上SKIPIF1<0【答案】CD【解析】根據(jù)題意,分析可得SKIPIF1<0,結合函數(shù)的解析式可得當SKIPIF1<0時函數(shù)的解析式,據(jù)此分析可得答案.【詳解】解:根據(jù)題意,函數(shù)SKIPIF1<0為奇函數(shù),則有SKIPIF1<0,即SKIPIF1<0,又由SKIPIF1<0為偶函數(shù),則SKIPIF1<0,則有SKIPIF1<0,即有SKIPIF1<0,當SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,則當SKIPIF1<0時,有SKIPIF1<0,則SKIPIF1<0為增函數(shù)且SKIPIF1<0;故SKIPIF1<0在SKIPIF1<0上為增函數(shù),且SKIPIF1<0;故選:SKIPIF1<0.6.【多選題】(2021·全國高三專題練習)若函數(shù)SKIPIF1<0對任意SKIPIF1<0都有SKIPIF1<0成立,SKIPIF1<0,則下列的點一定在函數(shù)SKIPIF1<0圖象上的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABC【解析】根據(jù)任意SKIPIF1<0滿足SKIPIF1<0,得到SKIPIF1<0是奇函數(shù)判斷.【詳解】因為任意SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0是奇函數(shù),又SKIPIF1<0,所以令SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,所以點SKIPIF1<0,且點SKIPIF1<0與SKIPIF1<0也一定在SKIPIF1<0的圖象上,故選:ABC.7.【多選題】(2021·浙江高一期末)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),當SKIPIF1<0時,SKIPIF1<0,則下列說法正確的是()A.函數(shù)SKIPIF1<0有2個零點 B.當SKIPIF1<0時,SKIPIF1<0C.不等式SKIPIF1<0的解集是SKIPIF1<0 D.SKIPIF1<0,都有SKIPIF1<0【答案】BCD【解析】根據(jù)函數(shù)奇偶性定義和零點定義對選項一一判斷即可.【詳解】對A,當SKIPIF1<0時,由SKIPIF1<0得SKIPIF1<0,又因為SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),所以SKIPIF1<0,故函數(shù)SKIPIF1<0有3個零點,則A錯;對B,設SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,則B對;對C,當SKIPIF1<0時,由SKIPIF1<0,得SKIPIF1<0;當SKIPIF1<0時,由SKIPIF1<0,得SKIPIF1<0無解;則C對;對D,SKIPIF1<0,都有SKIPIF1<0,則D對.故選:BCD.8.【多選題】(2021·蘇州市第五中學校高一月考)高斯是德國著名的數(shù)學家,近代數(shù)學奠基者之一,享有“數(shù)學王子”的稱號.設SKIPIF1<0,用SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),SKIPIF1<0也被稱為“高斯函數(shù)”,例如:SKIPIF1<0,SKIPIF1<0.已知函數(shù)SKIPIF1<0,下列說法中正確的是()A.SKIPIF1<0是周期函數(shù) B.SKIPIF1<0的值域是SKIPIF1<0C.SKIPIF1<0在SKIPIF1<0上是減函數(shù) D.SKIPIF1<0,SKIPIF1<0【答案】AC【解析】根據(jù)SKIPIF1<0定義將函數(shù)SKIPIF1<0寫成分段函數(shù)的形式,再畫出函數(shù)的圖象,根據(jù)圖象判斷函數(shù)的性質(zhì).【詳解】由題意可知SKIPIF1<0,SKIPIF1<0,可畫出函數(shù)圖像,如圖:可得到函數(shù)SKIPIF1<0是周期為1的函數(shù),且值域為SKIPIF1<0,在SKIPIF1<0上單調(diào)遞減,故選項AC正確,B錯誤;對于D,取SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,故D錯誤.故選:AC.9.【多選題】(2021·湖南高三月考)函數(shù)SKIPIF1<0滿足以下條件:①SKIPIF1<0的定義域是SKIPIF1<0,且其圖象是一條連續(xù)不斷的曲線;②SKIPIF1<0是偶函數(shù);③SKIPIF1<0在SKIPIF1<0上不是單調(diào)函數(shù);④SKIPIF1<0恰有2個零點.則函數(shù)SKIPIF1<0的解析式可以是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】CD【解析】利用函數(shù)圖象變換畫出選項A,B,C,D對應的函數(shù)圖象,逐一分析即可求解.【詳解】解:顯然題設選項的四個函數(shù)均為偶函數(shù),但SKIPIF1<0的定義域為SKIPIF1<0,所以選項B錯誤;函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,在SKIPIF1<0,SKIPIF1<0單調(diào)遞減,在SKIPIF1<0,SKIPIF1<0單調(diào)遞增,但SKIPIF1<0有3個零點,選項A錯誤;函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0的圖象對稱軸為SKIPIF1<0,其圖象是開口向下的拋物線,故SKIPIF1<0在SKIPIF1<0,SKIPIF1<0單調(diào)遞增,在SKIPIF1<0,SKIPIF1<0單調(diào)遞減,由圖得SKIPIF1<0恰有2個零點,選項C正確;函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,在SKIPIF1<0,SKIPIF1<0單調(diào)遞減,在SKIPIF1<0,SKIPIF1<0單調(diào)遞增,且SKIPIF1<0有2個零點,選項D正確.故選:CD.10.(2021·黑龍江大慶市·高三二模(理))定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0的圖象與SKIPIF1<0的圖象的交點個數(shù)為___________.【答案】7【解析】由題設可知SKIPIF1<0的周期為2,結合已知區(qū)間的解析式及SKIPIF1<0,可得兩函數(shù)圖象,即知圖象交點個數(shù).【詳解】由題意知:SKIPIF1<0的周期為2,當SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0、SKIPIF1<0的圖象如下:即SKIPIF1<0與SKIPIF1<0共有7個交點,故答案為:7.【點睛】結論點睛:SKIPIF1<0有SKIPIF1<0的周期為SKIPIF1<0.練真題TIDHNEG練真題TIDHNEG1.(2020·天津高考真題)函數(shù)SKIPIF1<0的圖象大致為()A. B.C. D.【答案】A【解析】【分析】由題意首先確定函數(shù)的奇偶性,然后考查函數(shù)在特殊點的函數(shù)值排除錯誤選項即可確定函數(shù)的圖象.【詳解】由函數(shù)的解析式可得:SKIPIF1<0,則函數(shù)SKIPIF1<0為奇函數(shù),其圖象關于坐標原點對稱,選項CD錯誤;當SKIPIF1<0時,SKIPIF1<0,選項B錯誤.故選:A.2.(2020·全國高考真題(理))設函數(shù)SKIPIF1<0,則f(x)()A.是偶函數(shù),且在SKIPIF1<0單調(diào)遞增 B.是奇函數(shù),且在SKIPIF1<0單調(diào)遞減C.是偶函數(shù),且在SKIPIF1<0單調(diào)遞增 D.是奇函數(shù),且在SKIPIF1<0單調(diào)遞減【答案】D【解析】由SKIPIF1<0得SKIPIF1<0定義域為SKIPIF1<0,關于坐標原點對稱,又SKIPIF1<0,SKIPIF1<0為定義域上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年小學學校工作總結參考模板(三篇)
- 2024年少先隊輔導員工作總結參考(二篇)
- 2024年年度銷售工作計劃模版(二篇)
- 2024年小學教師個人教學工作總結范本(四篇)
- 2024年學校消毒通風制度樣本(二篇)
- 2024年衛(wèi)生室管理制度樣本(五篇)
- 2024年員工個人年終工作總結范例(二篇)
- 2024年工商部門工作計劃范本(五篇)
- 【《N公司員工培訓問題與完善策略(含問卷)》9500字(論文)】
- 鄉(xiāng)村(社區(qū))后備干部考試卷及答案
- 五年級上冊數(shù)學小數(shù)和整數(shù)相乘課件蘇教版
- 2024秋期國家開放大學《政治學原理》一平臺在線形考(形考任務三)試題及答案
- 2024山東濟南軌道交通集團限公司招聘49人高頻難、易錯點500題模擬試題附帶答案詳解
- 5.2 城鎮(zhèn)與鄉(xiāng)村(教學設計)七年級地理上冊同步高效備課課件(人教版2024)
- 一 我有一個夢想(教學設計)2023-2024學年道德與法治(學生讀本)低年級
- 2024-2030年中國乳化劑行業(yè)市場調(diào)研及發(fā)展策略研究報告
- 2024年保安員理論考試題庫及答案(考點梳理)
- 深圳民政局離婚協(xié)議書模板
- 新高考背景下2025屆高考物理一輪復習策略
- 2024-2030年中國玻尿酸行業(yè)競爭策略與消費動態(tài)分析報告
評論
0/150
提交評論