湖北省鄂東南聯(lián)盟2023-2024學年高一上數(shù)學期末學業(yè)水平測試試題含解析_第1頁
湖北省鄂東南聯(lián)盟2023-2024學年高一上數(shù)學期末學業(yè)水平測試試題含解析_第2頁
湖北省鄂東南聯(lián)盟2023-2024學年高一上數(shù)學期末學業(yè)水平測試試題含解析_第3頁
湖北省鄂東南聯(lián)盟2023-2024學年高一上數(shù)學期末學業(yè)水平測試試題含解析_第4頁
湖北省鄂東南聯(lián)盟2023-2024學年高一上數(shù)學期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

湖北省鄂東南聯(lián)盟2023-2024學年高一上數(shù)學期末學業(yè)水平測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.設,,,則、、的大小關系是A. B.C. D.2.已知平面直角坐標系中,點,,,、、,,是線段AB的九等分點,則()A.45 B.50C.90 D.1003.已知函數(shù),則下列關于函數(shù)的說法中,正確的是()A.將圖象向左平移個單位可得到的圖象B.將圖象向右平移個單位,所得圖象關于對稱C.是函數(shù)的一條對稱軸D.最小正周期為4.在高一期中考試中,甲、乙兩個班的數(shù)學成績統(tǒng)計如下表:班級人數(shù)平均分數(shù)方差甲302乙203其中,則甲、乙兩個班數(shù)學成績的方差為()A.2.2 B.2.6C.2.5 D.2.45.若角的終邊過點,則A. B.C. D.6.在長方體中,,則異面直線與所成角的大小是A. B.C. D.7.設集合,.若,則()A. B.C. D.8.已知,則x等于A. B.C. D.9.已知,則A. B.C. D.10.關于x的方程恰有一根在區(qū)間內(nèi),則實數(shù)m的取值范圍是()A. B.C. D.11.已知函數(shù)是定義在上的偶函數(shù),當時,,則A. B.C. D.12.國家高度重視青少年視力健康問題,指出要“共同呵護好孩子的眼睛,讓他們擁有一個光明的末來”.某校為了調(diào)查學生的視力健康狀況,決定從每班隨機抽取5名學生進行調(diào)查.若某班有50名學生,將每一學生從01到50編號,從下面所給的隨機數(shù)表的第2行第4列的數(shù)開始,每次從左向右選取兩個數(shù)字,則選取的第三個號碼為()隨機數(shù)表如下:A.13 B.24C.33 D.36二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知函數(shù)(1)當時,求的值域;(2)若,且,求的值;14.已知函數(shù)在區(qū)間,上恒有則實數(shù)的取值范圍是_____.15.在中,,BC邊上的高等于,則______________16.已知函數(shù)fx=2-ax,x≤1,ax-1,x>1①存在實數(shù)a,使得fx②對任意實數(shù)a(a>0且a≠1),fx都不是R③存在實數(shù)a,使得fx的值域為R④若a>3,則存在x0∈0,+其中所有正確結(jié)論的序號是___________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知函數(shù),.(1)解不等式:;(2)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;(3)若函數(shù)的反函數(shù)為,且,其中為奇函數(shù),為偶函數(shù),試比較與的大小.18.已知向量函數(shù)(1)若時,不等式恒成立,求實數(shù)的取值范圍;(2)當時,討論函數(shù)的零點情況.19.已知(1)當時,解關于的不等式;(2)當時,解關于的不等式20.集合A={x|},B={x|};(1)用區(qū)間表示集合A;(2)若a>0,b為(t>2)的最小值,求集合B;(3)若b<0,A∩B=A,求a、b的取值范圍.21.已知函數(shù).(1)若函數(shù)在上至少有一個零點,求的取值范圍;(2)若函數(shù)在上最大值為3,求的值.22.已知直線l經(jīng)過點,其傾斜角為.(1)求直線l的方程;(2)求直線l與兩坐標軸圍成的三角形的面積.

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、B【解析】詳解】,,,故選B點睛:利用指數(shù)函數(shù)對數(shù)函數(shù)及冪函數(shù)的性質(zhì)比較實數(shù)或式子的大小,一方面要比較兩個實數(shù)或式子形式的異同,底數(shù)相同,考慮指數(shù)函數(shù)增減性,指數(shù)相同考慮冪函數(shù)的增減性,當都不相同時,考慮分析數(shù)或式子的大致范圍,來進行比較大小,另一方面注意特殊值的應用,有時候要借助其“橋梁”作用,來比較大小2、B【解析】利用向量的加法以及數(shù)乘運算可得,再由向量模的坐標表示即可求解.【詳解】,∴故選:B.3、C【解析】根據(jù)余弦型函數(shù)的圖象變換性質(zhì),結(jié)合余弦型函數(shù)的對稱性和周期性逐一判斷即可.【詳解】A:圖象向左平移個單位可得到函數(shù)的解析式為:,故本選項說法不正確;B:圖象向右平移個單位,所得函數(shù)的解析式為;,因為,所以該函數(shù)是偶函數(shù),圖象不關于原點對稱,故本選項說法不正確;C:因為,所以是函數(shù)的一條對稱軸,因此本選項說法正確;D:函數(shù)的最小正周期為:,所以本選項說法不正確,故選:C4、D【解析】根據(jù)平均數(shù)和方差的計算性質(zhì)即可計算.【詳解】設甲、乙兩班學生成績分別為,甲班平均成績?yōu)?,乙班平均成績?yōu)?,因為甲、乙兩班的平均成績相等,所以甲、乙兩班合在一起后平均成績依然為,因為,同理,∴甲、乙兩班合在一起后的方差為?故選:D.5、D【解析】角的終邊過點,所以.由角,得.故選D.6、C【解析】連接為異面直線與所成角,幾何體是長方體,是,,異面直線與所成角的大小是,故選C.7、C【解析】∵集合,,∴是方程的解,即∴∴,故選C8、A【解析】把已知等式變形,可得,進一步得到,則x值可求【詳解】由題意,可知,可得,即,所以,解得故選A【點睛】本題主要考查了有理指數(shù)冪與根式的運算,其中解答中熟記有理指數(shù)冪和根式的運算性質(zhì),合理運算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.9、D【解析】考點:同角間三角函數(shù)關系10、D【解析】把方程的根轉(zhuǎn)化為二次函數(shù)的零點問題,恰有一個零點屬于,分為三種情況,即可得解.【詳解】方程對應的二次函數(shù)設為:因為方程恰有一根屬于,則需要滿足:①,,解得:;②函數(shù)剛好經(jīng)過點或者,另一個零點屬于,把點代入,解得:,此時方程為,兩根為,,而,不合題意,舍去把點代入,解得:,此時方程為,兩根為,,而,故符合題意;③函數(shù)與x軸只有一個交點,橫坐標屬于,,解得,當時,方程的根為,不合題意;若,方程的根為,符合題意綜上:實數(shù)m的取值范圍為故選:D11、D【解析】由函數(shù)是定義在上的偶函數(shù),借助奇偶性,將問題轉(zhuǎn)化到已知區(qū)間上,再求函數(shù)值【詳解】因為是定義在上的偶函數(shù),且當時,,所以,選擇D【點睛】已知函數(shù)的奇偶性問題,常根據(jù)函數(shù)的奇偶性,將問題進行轉(zhuǎn)化,轉(zhuǎn)化到條件給出的范圍再進行求解12、D【解析】隨機數(shù)表進行讀數(shù)時,確定開始的位置以及位數(shù),逐一往后即可,遇到超出范圍或重復的數(shù)字跳過即可.【詳解】根據(jù)隨機數(shù)表的讀取方法,第2行第4列的數(shù)為3,每次從左向右選取兩個數(shù)字,所以第一組數(shù)字為32,作為第一個號碼;第二組數(shù)字58,舍去;第三組數(shù)字65,舍去;第四組數(shù)字74,舍去;第五組數(shù)字13,作為第二個號碼;第六組數(shù)字36,作為第三個號碼,所以選取的第三個號碼為36故選:D二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、(1)(2)【解析】(1)化簡函數(shù)解析式為,再利用余弦函數(shù)的性質(zhì)求函數(shù)的值域即可;(2)由已知得,利用同角之間的關系求得,再利用湊角公式及兩角差的余弦公式即可得解.【小問1詳解】,,利用余弦函數(shù)的性質(zhì)知,則【小問2詳解】,又,,則則14、【解析】根據(jù)對數(shù)函數(shù)的圖象和性質(zhì)可得,函數(shù)f(x)=loga(2x﹣a)在區(qū)間[]上恒有f(x)>0,即,或,分別解不等式組,可得答案【詳解】若函數(shù)f(x)=loga(2x﹣a)在區(qū)間[]上恒有f(x)>0,則,或當時,解得<a<1,當時,不等式無解.綜上實數(shù)的取值范圍是(,1)故答案為(,1).【點睛】本題考查的知識點是復合函數(shù)的單調(diào)性,及不等式的解法,其中根據(jù)對數(shù)函數(shù)的圖象和性質(zhì)構(gòu)造不等式組是解答的關鍵,屬于中檔題.15、.【解析】設邊上的高為,則,求出,.再利用余弦定理求出.【詳解】設邊上的高為,則,所以,由余弦定理,知故答案為【點睛】本題主要考查余弦定理,意在考查學生對該知識的理解掌握水平,屬于基礎題.16、①②④【解析】通過舉反例判斷①.,利用分段函數(shù)的單調(diào)性判斷②③,求出y=2-ax關于y軸的對稱函數(shù)為y=a-2x,利用y=a-2x與【詳解】當a=2時,fx=0,x≤1,2x-1,x>1當x>1時,若fx是R上的減函數(shù),則2-a<00<a<12-a≥當0<a<1時,y=ax-1單減,且當x>1時,值域為0,1,而此時y=2-ax單增,最大值為2-a,所以函數(shù)當1<a<2時,y=2-ax單增,y=ax-1單增,若fx的值域為R,則2-a≥a1-1=1,所以a≤1,與由①可知,當a=2時,函數(shù)fx值域不為R;當a>2時,y=2-ax單減,最小值為2-a,y=ax-1單增,且ax-1>1又y=2-ax關于y軸的對稱函數(shù)為y=a-2x,若a>3,則a-2>1=a1-1=1,但指數(shù)函數(shù)y=ax-1的增長速度快于函數(shù)y=a-2故答案為:①②④三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)或;(2);(3)【解析】(1)根據(jù)二次不等式和對數(shù)不等式的解法求解即可得到所求;(2)由可得,故所求范圍即為函數(shù)在區(qū)間上的值域,根據(jù)換元法求出函數(shù)的值域即可;(3)根據(jù)題意可求出,進而得到和,于是可得大小關系【詳解】(1)由,得或,即或,解得,所以原不等式的解集為(2)令,得令,由,得,則,其中令,則在上單調(diào)遞增,所以,即,所以.故實數(shù)的取值范圍為(3)由題意得,即,因此,因為為奇函數(shù),為偶函數(shù),所以,解得,所以,,因此另法:,所以【點睛】(1)本題考查函數(shù)知識的綜合運用,解題時要注意函數(shù)、方程、不等式間的關系的應用,根據(jù)條件及要求合理求解(2)解決函數(shù)零點問題時,可轉(zhuǎn)化為方程解得問題處理,也可利用分離變量的方法求解,轉(zhuǎn)化為求具體函數(shù)值域的問題,解題時注意轉(zhuǎn)化的合理性和等價性18、(1);(2)見解析【解析】(1)由題意得,結(jié)合不等式恒成立,建立m的不等式組,從而得到實數(shù)的取值范圍;(2))令得:即,對m分類討論即可得到函數(shù)的零點情況.【詳解】(1)由題意得,,當時,∴,又恒成立,則解得:(2)令得:得:,則.由圖知:當或,即或時,0個零點;當或,即或時,1個零點;當或,即或時,2個零點;當,即時,3個零點.綜上:或時,0個零點;或時,1個零點;或時,2個零點;時,3個零點.【點睛】本題考查三角函數(shù)的圖像與性質(zhì)的應用,三角不等式恒成立問題,函數(shù)的零點問題及三角函數(shù)的化簡,屬于中檔題.19、(1)或;(2)答案不唯一,具體見解析.【解析】(1)先因式分解,進而解出的范圍,進而結(jié)合指數(shù)函數(shù)的單調(diào)性求得答案;(2)設,然后因式分解,進而討論a的取值范圍求出t的范圍,最后結(jié)合指數(shù)函數(shù)的單調(diào)性求得答案.【小問1詳解】當時,若可得或,即解集為或【小問2詳解】令,不等式轉(zhuǎn)化為①當時,不等式解集為;②當時,不等式解集為或;③當時,不等式解集為;④當時,不等式解集為或.綜上所述,當時,解集為;當時,解集為或;當時,解集為;當時,解集為或.20、(1);(2);(3),.【解析】(1)解分式不等式即可得集合A;(2)利用基本不等式求得b的最小值,將b代入并因式分解,即可得解;(3)由題意知A?B,對a分類討論即求得范圍【詳解】解:(1)由,有,解得x≤﹣2或x>3∴A=(-∞,-2]∪(3,+∞)(2)t>2,當且僅當t=5時取等號,故即為:且a>0∴,解得故B={x|}(3)b<0,A∩B=A,有A?B,而可得:a=0時,化為:2x﹣b<0,解得但不滿足A?B,舍去a>0時,解得:或但不滿足A?B,舍去a<0時,解得或∵A?B∴,解得∴a、b的取值范圍是a∈,b∈(-4,0).【點評】本題考查了集合運算性質(zhì)、不等式的解法、分類討論方法,考查了推理能力與計算能力,屬于中檔題.21、(1);(2)或.【解析】(1)由函數(shù)在至少有一個零點,方程至少有一個實數(shù)根,,解出即可;(2)通過對區(qū)間端點與對稱軸頂點的橫坐標的大小比較,再利用二次函數(shù)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論