版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖南省2023-2024學年高一數(shù)學第一學期期末調(diào)研模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.將半徑都為1的4個鋼球完全裝入形狀為正四面體的容器里,這個正四面體的高的最小值為()A. B.C. D.2.若a>b>1,0<c<1,則下列式子中不正確的是()A. B.C. D.3.已知集合,則(
)A. B.C. D.4.若則函數(shù)的圖象必不經(jīng)過()A.第一象限 B.第二象限C.第三象限 D.第四象限5.已知定義在R上的函數(shù)是奇函數(shù)且滿足,,數(shù)列滿足,且,(其中為的前n項和).則A.3 B.C. D.26.已知,,,則的大小關系是()A. B.C. D.7.下列直線中,傾斜角為45°的是()A. B.C. D.8.已知,且滿足,則值A. B.C. D.9.將函數(shù)的圖象向左平移個單位后,所得圖象對應的函數(shù)是()A. B.C. D.10.函數(shù)在一個周期內(nèi)的圖像如圖所示,此函數(shù)的解析式可以是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,某化學實驗室的一個模型是一個正八面體(由兩個相同的正四棱錐組成,且各棱長都相等)若該正八面體的表面積為,則該正八面體外接球的體積為___________;若在該正八面體內(nèi)放一個球,則該球半徑的最大值為___________.12.函數(shù)的零點個數(shù)為___13.調(diào)查某高中1000名學生的肥胖情況,得到的數(shù)據(jù)如表:偏瘦正常肥胖女生人數(shù)88175y男生人數(shù)126211z若,則肥胖學生中男生不少于女生的概率為_________14.若函數(shù)在區(qū)間上為增函數(shù),則實數(shù)的取值范圍為______.15.如下圖所示的正四棱臺的上底面邊長為2,下底面邊長為8,高為3216.命題,,則為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設函數(shù)是定義在R上的奇函數(shù).(Ⅰ)求實數(shù)m的值;(Ⅱ)若,且在上的最小值為2,求實數(shù)k的取值范圍.18.已知函數(shù),,設(其中表示中的較小者).(1)在坐標系中畫出函數(shù)的圖像;(2)設函數(shù)的最大值為,試判斷與1的大小關系,并說明理由.(參考數(shù)據(jù):,,)19.筒車是我國古代發(fā)哪的一種水利灌溉工具,因其經(jīng)濟環(huán)保,至今還在農(nóng)業(yè)生產(chǎn)中得到使用.明朝科學家徐光啟在《農(nóng)政全書》中描繪了筒車的工作原理.如圖1是一個半徑為R(單位:米),有24個盛水筒的筒車,按逆時針方向勻速旋轉(zhuǎn),轉(zhuǎn)一周需要120秒,為了研究某個盛水筒P離水面高度h(單位,米)與時間t(單位:秒)的變化關系,建立如圖2所示的平面直角坐標系xOy.已知時P的初始位置為點(此時P裝滿水).(1)P從出發(fā)到開始倒水入槽需要用時40秒,求此刻P距離水面的高度(結(jié)果精確到0.1);(2)記與P相鄰的下一個盛水筒為Q,在簡車旋轉(zhuǎn)一周的過程中,求P與Q距離水面高度差的最大值(結(jié)果精確到0.1)參考數(shù)據(jù):,,,20.設全集,已知函數(shù)的定義域為集合A,函數(shù)的值域為集合B.(1)求;(2)若且,求實數(shù)a的取值范圍.21.(1)化簡:(2)求值:
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由題意可得,底面放三個鋼球,上再落一個鋼球時體積最小,于是把鋼球的球心連接,則可得到一個棱長為2的小正四面體,該小正四面體的高為,且由正四面體的性質(zhì)可知,正四面體的中心到底面的距離是高的,且小正四面體的中心和正四面體容器的中心是重合的,所以小正四面體的中心到底面的距離是,正四面體的中心到底面的距離是,所以可知正四面體的高的最小值為,故選擇C考點:幾何體的體積2、D【解析】利用對數(shù)函數(shù)、指數(shù)函數(shù)與冪函數(shù)的單調(diào)性即可判斷出正誤.【詳解】解:,,,A正確;是減函數(shù),,B正確;為增函數(shù),,C正確.是減函數(shù),,D錯誤.故選.【點睛】本題考查了對數(shù)函數(shù)、指數(shù)函數(shù)與冪函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎題.3、B【解析】直接利用兩個集合的交集的定義求得M∩N【詳解】集合M={x|x+1≥0}={x|x≥-1},N={x|x2<4}={x|-2<x<2},則M∩N={x|-1≤x<2},故選B【點睛】本題主要考查兩個集合的交集的定義和求法,屬于基礎題4、B【解析】令,則的圖像如圖所示,不經(jīng)過第二象限,故選B.考點:1、指數(shù)函數(shù)圖像;2、特例法解題.5、A【解析】由奇函數(shù)滿足可知該函數(shù)是周期為的奇函數(shù),由遞推關系可得:,兩式做差有:,即,即數(shù)列構成首項為,公比為的等比數(shù)列,故:,綜上有:,,則:.本題選擇A選項.6、A【解析】利用對數(shù)函數(shù)和指數(shù)函數(shù)的性質(zhì)求解【詳解】解:∵,∴,∵,∴,∵,∴,即,∴故選:A7、C【解析】由直線傾斜角得出直線斜率,再由直線方程求出直線斜率,即可求解.【詳解】由直線的傾斜角為45°,可知直線的斜率為,對于A,直線斜率為,對于B,直線無斜率,對于C,直線斜率,對于D,直線斜率,故選:C8、C【解析】由可求得,然后將經(jīng)三角變換后用表示,于是可得所求【詳解】∵,∴,解得或∵,∴∴故選C【點睛】對于給值求值的問題,解答時注意將條件和所求值的式子進行適當?shù)幕啠缓蠛侠淼剡\用條件達到求解的目的,解題的關鍵進行三角恒等變換,考查變換轉(zhuǎn)化能力和運算能力9、D【解析】根據(jù)圖像平移過程,寫出平移后的函數(shù)解析式即可.【詳解】由題設,.故選:D10、A【解析】根據(jù)圖象,先確定以及周期,進而得出,再由求出,即可得到函數(shù)解析式.【詳解】顯然,因為,所以,所以,由得,所以,即,,因為,所以,所以.故選:A二、填空題:本大題共6小題,每小題5分,共30分。11、①.②.【解析】由已知求得正八面體的棱長為,進而求得,即知外接球的半徑,進而求得體積;若球O在正八面體內(nèi),則球O半徑的最大值為O到平面的距離,證得平面,再利用相似可知,即可求得半徑.【詳解】如圖,記該八面體為,O為正方形的中心,則平面設,則,解得.在正方形中,,則在直角中,知,即正八面體外接球的半徑為故該正八面體外接球的體積為.若球O在正八面體內(nèi),則球O半徑的最大值為O到平面的距離.取的中點E,連接,,則,又,,平面過O作于H,又,,所以平面,又,,則,則該球半徑的最大值為.故答案為:,12、2【解析】當x≤0時,令函數(shù)值為零解方程即可;當x>0時,根據(jù)零點存在性定理判斷即可.【詳解】當x≤0時,,∵,故此時零點為;當x>0時,在上單調(diào)遞增,當x=1時,y<0,當x=2時,y>0,故在(1,2)之間有唯一零點;綜上,函數(shù)y在R上共有2個零點.故答案為:2.13、【解析】先求得,然后利用列舉法求得正確答案.【詳解】依題意,依題意,記,則所有可能取值為,,,共種,其中肥胖學生中男生不少于女生的為,,,共種,故所求的概率為.故答案為:14、【解析】由復合函數(shù)的同增異減性質(zhì)判斷得在上單調(diào)遞減,再結(jié)合對稱軸和區(qū)間邊界值建立不等式即可求解.【詳解】由復合函數(shù)的同增異減性質(zhì)可得,在上嚴格單調(diào)遞減,二次函數(shù)開口向上,對稱軸為所以,即故答案為:15、6【解析】如下圖所示,O'B'=2,OM=216、,【解析】由全稱命題的否定即可得解.【詳解】因為命題為全稱命題,所以為“,”.故答案為:,.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由奇函數(shù)即可解得,需要檢驗;(Ⅱ)由得,進而得,令,得,結(jié)合的范圍求解即可.試題解析:(Ⅰ)經(jīng)檢驗成立.(Ⅱ).,設設..當時,成立.當時,成立.當時,不成立,舍去.綜上所述,實數(shù)的取值范圍是.18、(1)見解析;(2)見解析.【解析】(1)根據(jù)(其中表示中的較小者),即可畫出函數(shù)的圖像;(2)由題意可知,為函數(shù)與圖像交點的橫坐標,即,設,根據(jù)零點存在定理及函數(shù)在上單調(diào)遞增,且為連續(xù)曲線,可得有唯一零點,再由函數(shù)在上單調(diào)遞減,即可得證.試題解析:(1)作出函數(shù)的圖像如下:(2)由題意可知,為函數(shù)與圖像交點的橫坐標,且,∴.設,易知即為函數(shù)零點,∵,,∴,又∵函數(shù)在上單調(diào)遞增,且為連續(xù)曲線,∴有唯一零點∵函數(shù)在上單調(diào)遞減,∴,即.19、(1)m(2)m【解析】(1)根據(jù)題意P從出發(fā)到開始倒水入槽用時40秒,可知線段OA按逆時針方向旋轉(zhuǎn)了,由,可求圓的半徑,由題意可知以OA為終邊的角為,由此即可求出P距離水面的高度;(2)由題意可知P轉(zhuǎn)動的角速度為rad/s,易知P開始轉(zhuǎn)動t秒后距離水面的高度的解析式,設P,Q兩個盛水筒分別用點B,C表示,易知,點C相對于點B始終落后rad,求出Q距離水面的高度,可得則P,Q距離水面的高度差,再根據(jù)三角函數(shù)的性質(zhì),即可求出結(jié)果.【小問1詳解】解:由于筒車轉(zhuǎn)一周需要120秒,所以P從出發(fā)到開始倒水入槽的40秒,線段OA按逆時針方向旋轉(zhuǎn)了,因為A點坐標為,得,以OA為終邊的角為,所以P距離水面的高度m【小問2詳解】解:由于筒車轉(zhuǎn)一周需要120秒,可知P轉(zhuǎn)動的角速度為rad/s,又以OA為終邊的角為,則P開始轉(zhuǎn)動t秒后距離水面的高度,如圖,P,Q兩個盛水筒分別用點B,C表示,則,點C相對于點B始終落后rad,此時Q距離水面的高度則P,Q距離水面的高度差,利用,可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 科技園區(qū)門衛(wèi)招聘協(xié)議
- 醫(yī)藥企業(yè)運營總監(jiān)聘用協(xié)議
- 市場部個人培訓小結(jié)
- 旅游設施建設合同樣本
- 傳統(tǒng)產(chǎn)業(yè)用地預審管理辦法
- 移動通信公司安全管理實施辦法
- 2022年大學物理學專業(yè)大學物理二期末考試試卷A卷-含答案
- 2022年大學機械專業(yè)大學物理二期末考試試卷D卷-含答案
- 互聯(lián)網(wǎng)企業(yè)協(xié)議休假管理辦法
- 2022年大學航空航天專業(yè)大學物理二月考試題D卷-含答案
- 水球(集體球類運動)
- T-JLA 003-2023 高速公路車距抓拍系統(tǒng)技術要求和檢驗方法
- 口內(nèi)數(shù)字化印模
- 玄學凈明明派丹法轉(zhuǎn)自萬景元
- 基層中醫(yī)藥適宜技術培訓
- 斯派克直讀光譜儀
- 遼寧毅菲生物科技有限公司年產(chǎn)1500噸水楊酰胺、1000噸8-羥基喹啉建設項目環(huán)評報告
- 數(shù)學成語故事《朝三暮四》-完整版課件
- 科室每月院感自查記錄
- 教練場地技術條件說明
- 2023年春季高考英語試題(上海卷)
評論
0/150
提交評論