版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年廣東省佛山市南海區(qū)石門實(shí)驗(yàn)學(xué)校中考數(shù)學(xué)三模試
卷
一、選擇題
1.2022的倒數(shù)是()
1
B.-------C.2022D.-2022
20222022
【答案】B
【解析】
【分析】根據(jù)倒數(shù)的定義:乘積為1的兩個(gè)數(shù)互為倒數(shù),即可得出答案.
【詳解】解:因?yàn)?022x」一二1,
2022
所以2022的倒數(shù)是一1—,
2022
故選:B.
【點(diǎn)睛】本題考查了倒數(shù),掌握乘積為1兩個(gè)數(shù)互為倒數(shù)是解題的關(guān)鍵.
2.觀察下列圖形,其中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是()
A999B.岫C,4fD.
?一
【答案】D
【解析】
【分析】根據(jù)軸對(duì)稱圖形和中心對(duì)稱圖形的定義進(jìn)行判斷即可.
【詳解】A是軸對(duì)稱圖形不是中心對(duì)稱圖形,不符合題意;
B是軸對(duì)稱圖形不是中心對(duì)稱圖形,不符合題意;
C既不是軸對(duì)稱圖形也不是中心對(duì)稱圖形,不符合題意;
D既軸對(duì)稱圖形又是中心對(duì)稱圖形,符合題意;
故選:D.
【點(diǎn)睛】本題考查了軸對(duì)稱圖形和中心對(duì)稱圖形的定義,即軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱
軸,圖形兩部分沿對(duì)稱軸折疊后可重合;中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后
與原圖重合.
3.新型冠狀病毒屬于P屬的新型冠狀病毒,有包膜,顆粒呈圓形或者橢圓形,常為多形
性,最大直徑約O.(XXXX)14米,將0.0000014用科學(xué)記數(shù)法表示為()
A.1.4x10-5B.1.4x10"C.1.4x10,D.
14x10%
【答案】B
【解析】
【分析】絕對(duì)值小于1的數(shù)用科學(xué)記數(shù)法表示,一般形式為axl(T",這里〃為正整數(shù),
1aK10,〃為原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)決定,按照此方法即可
把0.0000014用科學(xué)記數(shù)法表示出來.
【詳解】0.0000014=1.4X10-6.
故選:B.
【點(diǎn)睛】本題考查了用科學(xué)記數(shù)法表示較小的數(shù),一般形式為axl(T’,這里”為正整
數(shù),正確確定。與〃是解題的關(guān)鍵.
4.下列運(yùn)算中,正確的是()
326329
A.2ah-ab=2B.%.x=xC.(x)=xD.
2
1+--x
【答案】D
【解析】
【分析】根據(jù)合并同類項(xiàng)法則、同底數(shù)幕的乘法及幕的乘方運(yùn)算法則、負(fù)整數(shù)指數(shù)累的定
義計(jì)算判斷即可.
【詳解】解:A.2ab-ab=ab,該選項(xiàng)不符合題意;
B.尤3?丁丁,該選項(xiàng)不符合題意;
C.。3)2=/,該選項(xiàng)不符合題意;
D.1+r2=]+!=》2,該選項(xiàng)符合題意.
X
故選:D.
【點(diǎn)睛】本題主要考查了合并同類項(xiàng)法則、同底數(shù)幕的乘法及幕的乘方運(yùn)算法則、負(fù)整數(shù)
指數(shù)幕的定義等知識(shí),解題關(guān)鍵是熟練掌握相關(guān)定義和運(yùn)算法則.
5.在一個(gè)不透明袋中裝有5個(gè)白色小球,”個(gè)紅色小球,小球除顏色外其他完全相
4
同.若從中隨機(jī)摸出一個(gè)球,恰為紅球的概率為二,則〃為()
A.4B.5C.20D.25
【答案】C
【解析】
【分析】根據(jù)從中隨機(jī)摸出一個(gè)球,恰為紅球的概率求出恰為一個(gè)白球的概率為《,然后
根據(jù)白球的個(gè)數(shù)求出總個(gè)數(shù),即可求出〃的值.
4
【詳解】解::從中隨機(jī)摸出一個(gè)球,恰為紅球的概率為不,
41
從中隨機(jī)摸出一個(gè)球,恰為白球的概率為1一《=M,
???袋中裝有5個(gè)白色小球,
???球的總個(gè)數(shù)為:5-1=25(個(gè)),
,〃=25—5=20(個(gè)),故C正確.
故選:C.
【點(diǎn)睛】本題主要考查了根據(jù)概率求個(gè)數(shù),解題的關(guān)犍是根據(jù)白球的個(gè)數(shù)求出球的總個(gè)
數(shù).
6.如圖,四邊形A8CO內(nèi)接于OO,是直徑,ODHBC,若NC=124。,則的
度數(shù)為()
A.56°B.68°C.72°D.78°
【答案】B
【解析】
【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)可知NA=56°,然后根據(jù)等腰三角形的性質(zhì)可進(jìn)行求
解.
【詳解】解:;四邊形ABC。內(nèi)接于O。,ZC=124°,
ZA=180°-ZC=56°,
OA=OD,
:.NA£X7=NA=56°,
ZAOD=180°-2ZA=68°,
?:ODUBC,
N5=NAOD=68。;
故選B.
【點(diǎn)睛】本題主要考查圓內(nèi)接四邊形的性質(zhì),熟練掌握?qǐng)A內(nèi)四邊形的性質(zhì)是解題的關(guān)鍵.
7.如圖,RdA8C中,ZC=90°,BO平分/ABC交AC于點(diǎn)。,點(diǎn)E為48的中點(diǎn),若
AB=n,CD=3,則△QBE的面積為()
A.10B.12C.9D.6
【答案】C
【解析】
【分析】如圖:過。作。F_LAB于尸,然后根據(jù)角平分線的性質(zhì)可得£>F=C£)=3,然后再根據(jù)
中點(diǎn)的定義求得BE的長,最后根據(jù)三角形的面積公式求解即可.
【詳解】解:如圖:過。作QFLAB于F,
VZC=90°,8。平分/ABC交AC于點(diǎn)。,
:.DF=CD=3
??,點(diǎn)E為A8的中點(diǎn),AB=12
:.BE=;AB=6
;.△O8E的面積為』BE.£>E=2x6x3=9.
22
故選:C.
C
【點(diǎn)睛】本題主要考查了角平分線定理、中點(diǎn)的定義、三角形的高等知識(shí)點(diǎn),作出AOBE
的高并運(yùn)用角平分線定理求出成為解答本題的關(guān)鍵.
8.如圖,E是菱形ABC。的邊8c上的點(diǎn),連接AE.將菱形A8C。沿AE翻折,點(diǎn)B恰好
落在CO的中點(diǎn)尸處,則tan/ABE的值是()
D
A.4B.5C.V13D.V15
【答案】D
【解析】
【分析】過A點(diǎn)作AN,。尸于N,根據(jù)四邊形ABC。是菱形,WAB=CD=AD,
NABE=ND,設(shè)AZ>4,尸是C。中點(diǎn),則有OF=FC=2,根據(jù)翻折的性質(zhì)可知AB=AF,
則可知△4FQ是等腰三角形,由ANLOF,得AN也平分QF,則有£W=NF=1,在
RfZ\ANC中利用勾股定理可得AN,則可求出tan/。,即tan/4BE得解.
【詳解】過A點(diǎn)作ANJ_CF于N,如圖,
???四邊形ABC。是菱形,
:.AB=CD=AD,NABE=ND,設(shè)AD=4,
???F是CO中點(diǎn),
:.DF=FC=2,
根據(jù)翻折的性質(zhì)可知AB=AF,
...△AFO是等腰三角形,
VA7V1DF,
:.AN也平分DF,則有DN=NF=T,
...在Rt/XAND中利用勾股定理可得AN=y/Alf-DN2=>/42-12=而,
小AN岳r-
..tanZD=---=----=,15,
ND1
tanNABE=,
故選:D.
【點(diǎn)睛】本題考查了菱形的性質(zhì)、正切、等腰三角形的判定與性質(zhì)等知識(shí),證明△人■>是
等腰三角形是解答本題的關(guān)鍵.
9.如圖,在AABC中,45=4,AC=3,BC=5.將△43C沿著點(diǎn)A到點(diǎn)C的方向平
移到的位置,圖中陰影部分面積為4,則平移的距離為()
A.3-V6B.V6C.3+V6D.2指
【答案】A
【解析】
【分析】根據(jù)勾股定理的逆定理求出AABC是直角三角形,求出AABC的面積,根據(jù)平移
的性質(zhì)得出AC=O尸=3,ADE廠的面積=4M。的面積=6,再根據(jù)面積比等于相似
比的平方得出即可.
【詳解】解:QAB=4,AC=3,BC=5,
AB2+AC2=BC2,
.?.△ABC是直角三角形,NA=90°,
將AABC沿著點(diǎn)A到點(diǎn)C的方向平移到GEF的位置,
:.ADHCSQEF,
二.△。石尸的面積的面積=,x3x4=6,DF—AC-3?
2
???圖中陰影部分面積為4,
DCV4
DC2
二亍=/
解得:DC=V6,
即平移的距離是CF=AC-OC=3-n,
故選:A.
【點(diǎn)睛】本題考查了平移的性質(zhì),勾股定理的逆定理,三角形的面積和相似三角形的性質(zhì)
等知識(shí)點(diǎn),能求出△。防的面積是解此題的關(guān)鍵.
10.如圖,AB是。。的直徑,NAC8的平分線交。。于點(diǎn)。,連接A£>,BD,給出下
列四個(gè)結(jié)論:①NACB=90°;②△ABD是等腰直角三角形;③4)2=。石.8;④
AC+BC=-fiCD.其中正確的結(jié)論是()
A①②③B.①②④C.①③④D.
①②③④
【答案】D
【解析】
【分析】①直接利用圓周角定理的推論即可得出結(jié)論;
②利用角平分線的定義及圓周角定理的推論判斷即可;
③證明AADE?△CD4,從而利用相似三角形的判定及性質(zhì)即可判斷;
④延長C4至凡使AF=BC,連接QF,首先證明△ZMFgZXDBC,得出
DF=CD,ZADF=NCDB,然后判斷出△<?以為等腰直角三角形,進(jìn)而利用勾股定理
和等量代換即可判斷.
【詳解】如圖,延長。至F,使"=BC,連接。尸,
A3是。。的直徑,
:.ZACB=ZADB=90°,故①正確;
■:CD平分ZACB,
:.ZACD=/BCD,
AD=BD'
AD=BD<
.?.△ABD為等腰直角三角形,故②正確:
?:/BAD=/BCD,
:.ZBAD=ZACD.
又,;^ADE=/CDA,
:NADE:NCDA,
,ADDE
"~CD~~AD'
AD2=DECD,故③正確;
■.-ZDAF+ZCAD=\SO°,NCBD+NC4Z)=180°,
:"DAF=4CBD.
又?.AD=B。,
4DAF烏4DBC,
DF=CD,ZADF=NCDB.
■:^CDB+ZCDA=9Q°,
:.ZADF+ZCDA=90°,
.?.△COR為等腰直角三角形,
/.CF2=CD2+DF2=2CD2,
:,CF=y/2CD-
\-CF=CA+AF=AC+BC,
:.AC+BC=6CD,故④正確,
故選:D.
【點(diǎn)睛】本題主要考查圓與三角形的綜合,掌握?qǐng)A的有關(guān)性質(zhì),相似三角形的判定及性
質(zhì),全等三角形的判定及性質(zhì)和勾股定理是關(guān)鍵.
二、填空題
X
11.若代數(shù)式^有意義,則實(shí)數(shù)X的取值范圍是.
x-2
【答案】
【解析】
【分析】直接利用分式有意義的條件分析得出答案.
Y
【詳解】解:;代數(shù)式一^有意義,
尤一2
x—2H0,
實(shí)數(shù)x的取值范圍是:x#2.
故答案為xW2.
【點(diǎn)睛】本題考查分式有意義的條件,正確把握分式的定義是解題關(guān)鍵.
12.已知x=。是方程f-3x-5=0的根,則代數(shù)式4一24+6”的值為.
【答案】-6
【解析】
【分析】利用一元二次方程解的定義得到a2-3a=5,再把4-2a2+6a變形為4-2(a2-3a),然后
利用整體代入的方法計(jì)算即可.
【詳解】把x=4代入方程》2一3了-5=0,得4/2-34-5=0,則〃一3。=5,所以
4—2a~+6a——4—2(a~—3a)—4一2x5——6.
【點(diǎn)睛】本題考查一元二次方程解的定義,解題的關(guān)鍵是掌握一元二次方程解的定義.
13.如圖,點(diǎn)A為反比例函數(shù)y=勺(4H0,X>0)的圖象上一點(diǎn),過點(diǎn)4作A8_Lx軸于
點(diǎn)8,作軸于點(diǎn)。,反比例函數(shù)2NO,》〉。)的圖象與AB交于點(diǎn)C,
連接。4、OC,若%以。=3,5.=2,則網(wǎng)的值為.
y
D
0\Bx
【答案】2
【解析】
(分析】證明四邊形ADOB是矩形,得到S,"。=S%。=3,根據(jù)
-~>求出S^OBC的值,設(shè)點(diǎn)C的坐標(biāo)為(,","),求得〃?〃=2,進(jìn)而可
得到心的值.
【詳解】解::軸于點(diǎn)B,AOLy軸于點(diǎn)。,OBVOD
:.ZADO=ZABO=ZBOD=90°
...四邊形AQOB是矩形
:.AD=OB,OD=AB
;?。。=1ABOB=iADOD=S,=3
S℃=2
?*,SAOBC=SgoB-Sgc=3-2=1
設(shè)點(diǎn)。的坐標(biāo)為(加,〃),則OB=/n,BC=n
/.SAOBC=~OBBC—;mn—1
mn=2
?.?點(diǎn)C在反比例函數(shù)必=§(&70,x>0)的圖象上
&2—mn-2
故答案為:2.
【點(diǎn)睛】此題考查了矩形的判定與性質(zhì),反比例函數(shù)的解析式,反比例函數(shù)與幾何綜合,
熟練掌握反比例函數(shù)的性質(zhì)是基礎(chǔ),數(shù)形結(jié)合是解決問題的關(guān)鍵.
14.正多邊形的每個(gè)內(nèi)角等于150°,則這個(gè)正多邊形的邊數(shù)為條.
【答案】12
【解析】
【詳解】多邊形內(nèi)角和為180°(n-2),則每個(gè)內(nèi)角為180°(n-2)/n=150°,n=12,所以應(yīng)填
12.
15.如圖,在矩形ABC。中,BC=\,AB=2.以點(diǎn)A為圓心,ABDC長為半徑畫弧交
DC于點(diǎn)F,以點(diǎn)。為圓心,D4的長為半徑畫弧交0c于點(diǎn)E.則圖中陰影部分的面積為
.(結(jié)果保留兀)
【答案】正+工
212
【解析】
【分析】先連接4尸,根據(jù)題意和題目中的數(shù)據(jù),可以求得AF的長、OE的長、/放8的
度數(shù),然后根據(jù)圖形可知5陰影=5揖2+5用彩A8LS用彩A0E,代入數(shù)據(jù)計(jì)算即可.
【詳解】解:連接AK如下圖所示,
???四邊形ABC。是矩形,
:.CD//AB,ZD=90°,
':BC=1,A8=2,AF=ABf
:.AF=29
11
:.sinZAFD=^=^fDF=AF-AD=73,
/.ZAFD=30°,
■:DC//AB、
:.ZAFD=ZFDB=30°,
S陰影=S&V7)+S成形A6LS嗡形AOE
1x^330x/rx22QOx.zrxl2
=----+-----------------
2360360
y/371
=——+一,
212
故答案為:正+土.
212
DEFC
【點(diǎn)睛】
本題考查扇形面積的計(jì)算、矩形的性質(zhì),解答本題的關(guān)鍵是發(fā)現(xiàn)5硼=5掘。+5匐彩A8LS1s
形4。萬?
16.如圖,用8個(gè)全等的放△A8C(AC>B0分別拼成如圖1和圖2中的兩個(gè)正方形,中間
的兩個(gè)小正方形的面積分別記為SI和52,且S?=3S,,則tanA=.
【解析】
【分析】設(shè)AC=b,BC=a,則AB2=q2+爐,用人/?分別表示出Si和列出關(guān)于人的一元
h
二次方程求解即可.
【詳解】解:設(shè)AC=b,BC=a,則4屏北+加,
依題意得:S\=(b-a)2=a2+b2-2ab,S2=a2+b2,
VS2=3SI,
ci2+b2=3ci2+3b2-6ab,
整理得:。2+按=3〃兒
兩邊同除以按得:(一)2+1=—,即(一)2---+1=0,
bbhb
設(shè)f=y,則方程為產(chǎn)3y+l=0,
b
A=(-3)2-4X1X1=5>0,
...解方程得:、=匹亞,
2
b>a,
/.—=y<1,
b
,,a3-V5
tarL4=—=y=-----,
b2
故答案為:士2叵.
2
【點(diǎn)睛】本題考查了求角的正切值,解一元二次方程,用。、人分別表示出與和S2,列出
關(guān)于-的一元二次方程是解題的關(guān)鍵.
b
CD1
17.如圖,在對(duì)A48C中,ZBAC=90°f8(-8,0),C8與y軸交于點(diǎn)。,一二一,點(diǎn)
BD4
C在反比例函數(shù)y=A(x>0)的圖象上,且X軸平分NA8C,則%的值為.
【解析】
【分析】作y軸的垂線,構(gòu)造相似三角形,利用B£)=4C。和B(-8,0)可以求出C的橫坐
標(biāo),再利用三角形相似,設(shè)未知數(shù),由相似三角形對(duì)應(yīng)邊成比例,列出方程,求出待定未
知數(shù),從而確定點(diǎn)C的坐標(biāo),進(jìn)而確定k的值.
【詳解】解:過C作CE_Ly軸,垂足為E,
,:B(-8,0),
二。8=8,
VZCED=ZBOD=90°,NCDE=NBDO
:.^CDE<^/\BDO,
?:BD=4CD,
CEDECD_1
:.CE=2;
又軸平分NC&4,BO±AD,
:.AO=OD,
':ZCAB=90°,
:.NOBD=/DCE=NCAE,
.?.△CAEs△力BO,
CE_AE
~OD~~OB
設(shè)。E=",則A0=0£>=4”,AE=9n,
京卷,解得〃2
3
\0E=5〃=
3
TT
【點(diǎn)睛】本題考查反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,綜合利用相似三角形的性質(zhì),全等三
角形的性質(zhì)求C的坐標(biāo),依據(jù)C在反比例函數(shù)的圖象上的點(diǎn),根據(jù)坐標(biāo)求出”的值.綜合
性較強(qiáng),注意轉(zhuǎn)化思想方法的應(yīng)用.
三、解答題
18.先化筒二±2土1+(?!?+二一),然后從-2,-1,1,2四個(gè)數(shù)中選擇一個(gè)合適
。+2。+2
的數(shù)作為a的值代入求值.
_,.._。+1
【答案】——,3.
CI—1
【解析】
【分析】先進(jìn)行分式的混合運(yùn)算,根據(jù)分式有意義的條件,把a(bǔ)=2代入計(jì)算即可.
r¥版1百十(a+l)2a2-4+3(?+1)2a+2a+1
[詳解]原式=-------4----------------------=---,
a+2a+2a+2(a—l)(a+1)a—1
2+1
當(dāng)a=2時(shí),原式=——=3.
2-1
考點(diǎn):分式的化簡求值.
19.某公司為了了解員工上下班回家的路程(設(shè)路程為x千米)情況,隨機(jī)抽取了若干名員
工進(jìn)行了問卷調(diào)查,現(xiàn)將這些員工的調(diào)查結(jié)果分為四個(gè)等級(jí);A:0<x<3;B:
3<x<6;C:6<x<9;D:x>9.并將調(diào)查結(jié)果繪制成如下兩個(gè)不完整的統(tǒng)計(jì)圖.
路程等級(jí)人數(shù)條形統(tǒng)計(jì)圖
路程等級(jí)人數(shù)扇形統(tǒng)計(jì)圖
(2)所抽取員工下班路程的中位數(shù)落在等級(jí)(填字母);
(3)若該公司有900名員工,員工上下班在高峰期時(shí)路程在3<x?9千米會(huì)優(yōu)先選擇共
享單車下班,請(qǐng)你估算該公司有多少人會(huì)優(yōu)先選擇共享單車.
【答案】(1)補(bǔ)全的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖見解析;
(2)B(3)該公司有450人會(huì)優(yōu)先選擇共享單車.
【解析】
【分析】(1)由兩個(gè)統(tǒng)計(jì)圖可知道A等級(jí)的有56人,占調(diào)查人數(shù)的35%,可求出調(diào)查人
數(shù),進(jìn)而求出。等級(jí)所占的百分比,和B等級(jí)的百分比,再求出8等級(jí)的人數(shù),從而補(bǔ)全
條形統(tǒng)計(jì)圖、以及扇形統(tǒng)計(jì)圖中8、。所占的百分比.
(2)A等級(jí)占35%,8等級(jí)的占20%,從高到低,中位數(shù)應(yīng)落在50%的組,因此落在8
組.
⑶樣本估計(jì)總體,樣本中“在3<x<9千米占(30%+20%)”估計(jì)總體中的也占50%,進(jìn)
而求出人數(shù).
【小問1詳解】
解:調(diào)查人數(shù)為:56+35%=160,
。對(duì)應(yīng)的百分比為24+160=15%,
B對(duì)應(yīng)的百分比為1-15%-35%—30%=2()%,
8等級(jí)的人數(shù)為16()x20%=32,
補(bǔ)全的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖如圖所示,
路程等級(jí)人數(shù)條形統(tǒng)計(jì)圖
故答案為:B;
【小問3詳解】
900x(30%+20%)=450(人),
答:該公司有45()人會(huì)優(yōu)先選擇共享單車.
【點(diǎn)睛】本題考查條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖的特點(diǎn)及制作方法,從兩個(gè)統(tǒng)計(jì)圖中獲取數(shù)量
和數(shù)量之間的關(guān)系式解決問題的關(guān)鍵,樣本估計(jì)總體是統(tǒng)計(jì)中常用的方法.
20.如圖,在矩形A8C。中,點(diǎn)E、F是對(duì)角線AC上的兩點(diǎn),AF=CE.
(1)試判斷四邊形BEDF的形狀,并說明理由:
(2)若BELAC,Bf=10,BE=6,求線段CF的長.
【答案】(1)四邊形BECF為平行四邊形,理由見解析;
(2)2713-4
【解析】
【分析】(1)證明(SAS),得出NAFZ)=NCEB,即可得出結(jié)論;
(2)連接8。交AC于點(diǎn)0,先根據(jù)勾股定理求出£尸的長,再求出08的長,由此即可解
決問題.
【小問1詳解】
四邊形BEDF為平行四邊形,理由如下:
???四邊形ABCD為矩形,
:.AB=CD,AB//CD,
:.NBAF=NDCE,
在ABA尸和ADCE中,
AB=CD
<NBAF=ZDCE,
AF=CE
:./\DCE^/\BAF(SAS),
:.DE=BF,NDEF=NBFE,
C.DE//BF,
???四邊形BEDF為平行四邊形;
【小問2詳解】
-.BELAC
:.ZBEC=9(f
;BF=10,BE=6
.-.EF=A/102-62=8
.-.OE=OF=4
OB=ylBE2+OE2=V62+42=2/
?.?四邊形ABC。是矩形,
:.0B=0C=2岳
:.CF=OC-OF=2^13-4
【點(diǎn)睛】本題考查了矩形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理等知識(shí);熟練掌握
矩形的性質(zhì)和勾股定理,證明三角形全等是解題的關(guān)鍵.
21.如圖,點(diǎn)A為直線y=3x上位于第一象限的一個(gè)動(dòng)點(diǎn),過點(diǎn)A作A3_Lx軸于點(diǎn)8,
將點(diǎn)8向右平移2個(gè)單位長度到點(diǎn)C,以A6,8C為邊構(gòu)造矩形ABC。,經(jīng)過點(diǎn)A的反
比例函數(shù)y=V(x>0)的圖像交CD于點(diǎn)
(2)連接40,當(dāng)時(shí),求點(diǎn)A的坐標(biāo).
【答案】(1)M(3,l)
(2)點(diǎn)A坐標(biāo)為
【解析】
【分析】(1)由直線解析式求得A的坐標(biāo),即可根據(jù)待定系數(shù)法求得反比例函數(shù)的解析
式,把點(diǎn)M的橫坐標(biāo)代入即可求得加的坐標(biāo);
(2)設(shè)點(diǎn)4(以3機(jī)),由/84£>=9()°可得4。。464河04,從而可得m
的值,進(jìn)而求解.
【小問1詳解】
解:由題意可知A的橫坐標(biāo)為1,
把x=l代入y=3x得,y=3,
??.A(l,3),
;反比例函數(shù)y="(x>。)的圖像經(jīng)過點(diǎn)A,
x
二.Z=1x3=3,
y=-,
X
???3(1,0),BC=2,
.-.C(3,0),
把x=3代入得,y=l,
【小問2詳解】
解:設(shè)點(diǎn)
???四邊形ABC。為矩形,
ZABO=ZBAD=90°,
-:AM10A,
:.NOAB+ZBAM=ADAM+ZBAM=90°,
:.Z.OAB=ADAM,
:.AOBAS^MDA,
DMADDM2
—=—,即Hn——=—,
OBABm3/〃
解得。M=2,
3
2
*1?點(diǎn)M坐標(biāo)為(租+2,3m—),
3
?.?點(diǎn)A,“都在反比例函數(shù)圖像上,
2
3m?m=(m+2)(3m——),
解得m=-,
4
13
..?點(diǎn)A坐標(biāo)為(一,3.
44
【點(diǎn)睛】本題考查反比例函數(shù)與一次函數(shù)的交點(diǎn)問題、矩形的性質(zhì),解題關(guān)鍵是掌握待定
系數(shù)法求函數(shù)解析式,掌握反比例函數(shù)的性質(zhì),掌握相似三角形的判定及性質(zhì).
22.今年的冬奧會(huì)點(diǎn)燃了青少年的“冰雪熱”,推動(dòng)了冰雪產(chǎn)業(yè)經(jīng)濟(jì).某體育運(yùn)動(dòng)器材商
店的滑雪護(hù)目鏡和滑雪頭盔成了熱銷商品.已知滑雪頭盔比滑雪護(hù)目鏡的進(jìn)價(jià)高50元,商
店用4000元購進(jìn)的滑雪頭盔與用3000元購進(jìn)的滑雪護(hù)目鏡數(shù)量一樣多.
(1)求滑雪護(hù)目鏡和滑雪頭盔的進(jìn)價(jià);
(2)該商品計(jì)劃購進(jìn)滑雪護(hù)目鏡和滑雪頭盔共200個(gè),且滑雪護(hù)目鏡的數(shù)量不少于滑雪頭
盔的2倍.購進(jìn)后,滑雪護(hù)目鏡按高于進(jìn)價(jià)18%定價(jià),滑雪頭盔按高于進(jìn)價(jià)15%定價(jià).假設(shè)
該商店購進(jìn)的這兩種商品最后均能按定價(jià)售出,請(qǐng)你求出該商店能獲得最大利潤的進(jìn)貨方
案.
【答案】(1)150;200
(2)當(dāng)購進(jìn)滑雪護(hù)目鏡134個(gè),滑雪頭盔66個(gè)時(shí),商店獲得最大利潤5598元
【解析】
【分析】(1)設(shè)一副滑雪護(hù)目鏡的進(jìn)價(jià)為x元,根據(jù)購進(jìn)護(hù)目鏡與頭盔的數(shù)量相等,建立
等量關(guān)系進(jìn)而求解.
(2)設(shè)計(jì)劃購進(jìn)滑雪護(hù)目鏡。個(gè),根據(jù)題意,將商店獲得的利潤表示為。的函數(shù),根據(jù)函
數(shù)增減性求解.
【小問1詳解】
解:設(shè)一副滑雪護(hù)目鏡的進(jìn)價(jià)為x元,則一個(gè)滑雪頭盔的進(jìn)價(jià)為Cv+50)元,
40003000
由題意得,(=-----,
(x+50)x
解得x=150,
經(jīng)檢驗(yàn),x=150是原方程的解,符合題意,
故x+5()=20(),
答:一副滑雪護(hù)目鏡的進(jìn)價(jià)為150元,一個(gè)滑雪頭盔的進(jìn)價(jià)為200元.
【小問2詳解】
解:設(shè)計(jì)劃購進(jìn)滑雪護(hù)目鏡〃個(gè),則計(jì)劃購進(jìn)滑雪頭盔(200-a)個(gè),
由題意得,a?2(200a),
,400
解得,a3——>
3
「a為整數(shù),
Aa>134,
護(hù)目鏡定價(jià):150?(118%)=177(元),
滑雪頭盔定價(jià):2007(115%)=230(元),
設(shè)該商店能獲得的利潤為W,
貝U有W=(177-150)a+(230-200)(200-a),
化簡得,W=-3a+6000,其中a2134,
隨。的增大而減小,
.?.當(dāng)a=134時(shí),W有最大值5598,
答:當(dāng)購進(jìn)滑雪護(hù)目鏡134個(gè),購進(jìn)滑雪頭盔66個(gè)時(shí),商店獲得最大利潤5598元.
【點(diǎn)睛】本題考查了分式方程及一次函數(shù)的實(shí)際應(yīng)用,充分理解題意,根據(jù)題意列出相應(yīng)
的方程及一次函數(shù),是解題的關(guān)鍵,注意分式方程求解之后需要檢驗(yàn).
23.如圖,AB是。。的直徑,點(diǎn)。,E在。。上,△4=2/8。石,點(diǎn)。在48的延長線
上,ZC=ZABD.
⑴求證:CE是。。的切線;
⑵若0。的半徑長為5,BF=2,求上戶的長.
【答案】(1)詳見解析;(2)EF=M
【解析】
【分析】(1)連接0E,易得NAZM=90°,證明NBOE=NA聯(lián)立NC=NA5D可求證.
(2)連5E,根據(jù)同弧所對(duì)的的圓周角先證明根據(jù)相似三角形的性質(zhì)
求出的長度.
【詳解】⑴連0E,
,/AB是O。的直徑
ZADB=90°
:.ZA+ZABD=90°
,-BE
/.4B0E=2/BDE
":ZA=2ZBDE
:.ZBQE=ZA
,:/C=ZABD
:.ZBOE+ZC=90°
:.ZOEC=90°
半徑OEJ_EC
⑵連BE
?BD
/.ABED=ZA=ZBOE
/.ABEFsABOE
.BEBFEF
''~BO~~BE~^OE
?;OB=OE=5,BF-2
;?BE=EF
???EF2=OEBF=10
???EF=M
【點(diǎn)睛】本題考查了圓的相關(guān)知識(shí),相似三角形的判定及性質(zhì),解題的關(guān)鍵在于合理作出
輔助線轉(zhuǎn)化求解.
24.在矩形ABC。中,AB=n,P是邊AB上一點(diǎn),把APBC沿直線PC折疊,頂點(diǎn)B的
對(duì)應(yīng)點(diǎn)是點(diǎn)G,過點(diǎn)8作BEJ.CG,垂足為E且在AD上,BE交PC于點(diǎn)、F.
圖1圖2圖3
(1)如圖1,若點(diǎn)E是AO的中點(diǎn),求證:AAEB冬ADEC;
(2)如圖2,當(dāng)AD=25,且A£<D£時(shí),求,1?的值;
(3)如圖3,當(dāng)8E?所=84時(shí),求8P的值.
4
【答案】(1)見解析(2)不
(3)7
【解析】
【分析】(1)先判斷出/A=N/>90。,AB=DC,再判斷出AE=DE,進(jìn)而根據(jù)“SAS”即可
得出結(jié)論;
(2)利用折疊的性質(zhì),得出NPGC=NPBC=90。,ZBPC=ZGPC,進(jìn)而由平行線的性
質(zhì)得出等量代換可得:NBPF=/BFP,繼而得出8P=B凡證明
△ABESADEC,得出比例式建立方程求解即可得出AE=9,DE=16,再判斷出
△ECFs^GCP,進(jìn)而求出P8,即可得出結(jié)論;
(3)連接FG,易證四邊形8PGF是菱形,繼而判斷出△GEFsaEAB,得出
BE?EF=AB?GF,即可得出結(jié)論.
【小問1詳解】
???四邊形A3CD是矩形,
???NA=NO=90。,AB=DC,
?.?七是A。中點(diǎn),
:,AE=DE,
在和△QEC中,
AB=DC
<ZA=ZD
AE=DE
:.AAEB^ADEC(SAS);
【小問2詳解】
在矩形ABC。,ZABC=90°,AB=CD=12,
,.,△8PC沿PC折疊得到△GPG
.\ZPGC=ZPBC=90o,/BPC=NGPC,
VBE±CG,
:.BE//PG,
:?/GPF=NPFB,
:./BPF=/BFP,
:.BP=BF,
?.,ZBEC=90°,
JNAEB+NCED=90。,
*/ZAEB+ZABE=90°f
:.ZCED=ZABE,
?.?/A=ND=90。,
:.AABE^ADEC,
ABDE
?'?----=-----,
AECD
設(shè)AE=X9
DE=25-x,
.1225-x
/.—=-------,
x12
,x=9或x=16,
\9AE<DE,
:.AE=9f£>£=16,
在RtZkABE中,由勾股定理可得:
BE=\IAB2+AE2=V122+92=15,
同理可得:CE=20,
由折疊得,BP=PG,
:.BP=BF=PG,
\'BE//PG,
:.△ECFSXGCP,
,EF_CE_CF
''~PG~~CG~~PC'
設(shè)BP=BF=PG=y,
.15—y_20
/.---------=-----,
y25
2525
y=—,即8P=5/=26=二,
-33
2520
EF=BE—BF=15——=——,
33
20
.生_竺_3_3
"~PC~~PG~~25~5'
3
【小問3詳解】
如圖,連接尸G,
G
':ZGEF=ZPGC=90°,
:.BF//PG
由(2)知,BF=PG=BF,
四邊形BPG尸是菱形,
:.BP〃GF,
:.NGFE=ZABE,
:.△GEFs^EAB,
.EFGF
??二,
ABBE
BE?EF-AB*GF,
?:BE/EF=84,AB=12,
GF=7,
:.BP=GF=1.
【點(diǎn)睛】本題是四邊形綜合題,主要考查了矩形的性質(zhì),全等三角形的性質(zhì)和判定,相似
三角形的性質(zhì)和判定,折疊的性質(zhì),利用方程思想解決問題是本題的關(guān)鍵.
25.如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點(diǎn)A(0,3)、B(1,0),其對(duì)稱軸為直線
1:x=2,過點(diǎn)A作人(:〃*軸交拋物線于點(diǎn)C,NAOB的平分線交線段AC于點(diǎn)E,點(diǎn)P是
拋物線上的一個(gè)動(dòng)點(diǎn),設(shè)其橫坐標(biāo)為m.
圖①圖②
(1)求拋物線的解析式;
(2)若動(dòng)點(diǎn)P在直線0E下方的拋物線上,連結(jié)PE、P0,當(dāng)m為何值時(shí),四邊形AOPE
面積最大,并求出其最大值;
(3)如圖②,F(xiàn)是拋物線的對(duì)稱軸1上的一點(diǎn),在拋物線上是否存在點(diǎn)P使4POF成為以
點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫出所有符合條件的點(diǎn)P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【全程復(fù)習(xí)方略】2020年高考政治一輪課時(shí)提升作業(yè)(9)-必修1-第4單元-第9課(江蘇專供)
- 安徽省蚌埠市A層高中2024-2025學(xué)年高二上學(xué)期第二次聯(lián)考地理試卷(含答案)
- 【原創(chuàng)】2013-2020學(xué)年高二數(shù)學(xué)必修四導(dǎo)學(xué)案:3.2二倍角的三角
- 【紅對(duì)勾】2021高考生物(人教版)一輪課時(shí)作業(yè):必修3-第6章-生態(tài)環(huán)境的保護(hù)
- 《胸腔鏡術(shù)后護(hù)理》課件
- 2024-2025學(xué)年廣東省汕頭市金平區(qū)七年級(jí)(上)期末數(shù)學(xué)試卷
- 五年級(jí)數(shù)學(xué)(小數(shù)乘法)計(jì)算題專項(xiàng)練習(xí)及答案匯編
- 【全程復(fù)習(xí)方略】2021年高中化學(xué)選修三課時(shí)達(dá)標(biāo)·效果檢測-第3章-晶體結(jié)構(gòu)與性質(zhì)3.4-
- 【優(yōu)化方案】2020-2021學(xué)年高一下學(xué)期數(shù)學(xué)(必修3)模塊綜合檢測
- 【志鴻優(yōu)化設(shè)計(jì)】2020高考地理(人教版)一輪教學(xué)案:第17章-第1講世界地理概況
- 2024年中國航空油料集團(tuán)有限公司校園招聘考試試題必考題
- 文史哲與藝術(shù)中的數(shù)學(xué)智慧樹知到期末考試答案章節(jié)答案2024年吉林師范大學(xué)
- (正式版)JTT 1499-2024 公路水運(yùn)工程臨時(shí)用電技術(shù)規(guī)程
- 知識(shí)圖譜智慧樹知到期末考試答案章節(jié)答案2024年浙江大學(xué)
- 《灰塵的旅行》導(dǎo)讀
- 高血壓患者不遵醫(yī)飲食行為的原因分析及對(duì)策
- 60周歲以上的老年人換領(lǐng)C1駕照三力測試題答案
- 社區(qū)依法執(zhí)業(yè)培訓(xùn)課件
- ISO50001能源管理體系管理評(píng)審報(bào)告OK
- 輸送機(jī)械安全培訓(xùn)
- 租房定金協(xié)議電子版本
評(píng)論
0/150
提交評(píng)論