




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
3.4對數(shù)運(yùn)算及對數(shù)函數(shù)(精講)(提升版)思維導(dǎo)圖思維導(dǎo)圖考點(diǎn)呈現(xiàn)考點(diǎn)呈現(xiàn)例題剖析例題剖析考點(diǎn)一對數(shù)運(yùn)算【例1】(2022·全國·高三專題練習(xí))化簡求值(1)SKIPIF1<0;(2)SKIPIF1<0;.(3)SKIPIF1<0;.(4)SKIPIF1<0.【答案】(1)1;(2)1;(3)4;(4)2.【解析】(1)SKIPIF1<0SKIPIF1<0;(2)SKIPIF1<0SKIPIF1<0;(3)SKIPIF1<0SKIPIF1<0SKIPIF1<0;(4)SKIPIF1<0SKIPIF1<0【一隅三反】(2022·全國·高三專題練習(xí))化簡求值:(1)SKIPIF1<0.(2)SKIPIF1<0;(3)SKIPIF1<0.(4)SKIPIF1<0(5)SKIPIF1<0.【答案】(1)5;(2)3;(3)0;(4)3;(5)SKIPIF1<0.【解析】(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0;(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0;(3)SKIPIF1<0SKIPIF1<0SKIPIF1<0;(4)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0;(5)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.考點(diǎn)二對數(shù)函數(shù)的單調(diào)性【例2-1】(2022·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增,則實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】SKIPIF1<0,函數(shù)定義域滿足:SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,根據(jù)復(fù)合函數(shù)單調(diào)性知,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,函數(shù)對稱軸為SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0.故選:C.【例2-2】(2022·天津·南開中學(xué)二模)已知函數(shù)SKIPIF1<0是R上的單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】當(dāng)函數(shù)SKIPIF1<0是R上的單調(diào)遞減函數(shù),所以SKIPIF1<0,解得SKIPIF1<0,因?yàn)镾KIPIF1<0且SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0不可能是增函數(shù),所以函數(shù)SKIPIF1<0在R上不可能是增函數(shù),綜上:實(shí)數(shù)a的取值范圍為SKIPIF1<0,故選:B【一隅三反】1.(2022·全國·高三專題練習(xí))函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為____________.【答案】SKIPIF1<0【解析】由SKIPIF1<0得SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,開口向上,對稱軸為SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,SKIPIF1<0在定義域內(nèi)單調(diào)遞增,所以SKIPIF1<0)在SKIPIF1<0上單調(diào)遞增,所以函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間是SKIPIF1<0.故答案為:SKIPIF1<0.2.(2022·全國·高三專題練習(xí))已知函數(shù)f(x)=lg(x2-2x-3)在(-∞,a)單調(diào)遞減,則a的取值范圍是(
)A.(-∞,-1] B.(-∞,2] C.[5,+∞) D.[3,+∞)【答案】A【解析】SKIPIF1<0是增函數(shù),SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0遞增,因此SKIPIF1<0在SKIPIF1<0上遞減,則有SKIPIF1<0,解得SKIPIF1<0.故選:A.3.(2021·天津市武清區(qū)大良中學(xué)高三階段練習(xí))若函數(shù)SKIPIF1<0在R上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是_______【答案】SKIPIF1<0【解析】由SKIPIF1<0,在R上單調(diào)遞增,∴SKIPIF1<0在SKIPIF1<0上遞增,SKIPIF1<0在SKIPIF1<0上也遞增,由增函數(shù)圖象特征知:SKIPIF1<0不能在點(diǎn)SKIPIF1<0上方,綜上,SKIPIF1<0,解得SKIPIF1<0,∴實(shí)數(shù)a的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.4.(2022·河北)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),求實(shí)數(shù)SKIPIF1<0的取值范圍_____.【答案】SKIPIF1<0【解析】令SKIPIF1<0,因?yàn)橥鈱雍瘮?shù)SKIPIF1<0為減函數(shù),則內(nèi)層函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是減函數(shù),所以,SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.考點(diǎn)三對數(shù)函數(shù)的值域(最值)【例3-1】(2022·全國·高三專題練習(xí))函數(shù)SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.0【答案】A【解析】由題意知SKIPIF1<0的定義域?yàn)镾KIPIF1<0.所以,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0時等號成立.故選:A.【例3-2】(2022·四川·宜賓市教科所三模)若函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】當(dāng)SKIPIF1<0時,f(x)=SKIPIF1<0,當(dāng)SKIPIF1<0時,f(x)=SKIPIF1<0,故要使SKIPIF1<0的值域是SKIPIF1<0,則0≤SKIPIF1<0≤1,解得SKIPIF1<0.故選:C.【例3-3】(2022·重慶·模擬預(yù)測)若函數(shù)SKIPIF1<0有最小值,則實(shí)數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】依題意SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,綜上可得SKIPIF1<0,令SKIPIF1<0的根為SKIPIF1<0、SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0在定義域上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,根據(jù)復(fù)合函數(shù)的單調(diào)性可知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,函數(shù)不存在最小值,故舍去;若SKIPIF1<0,則SKIPIF1<0在定義域上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,根據(jù)復(fù)合函數(shù)的單調(diào)性可知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以函數(shù)在SKIPIF1<0取得最小值,所以SKIPIF1<0;故選:A【一隅三反】1.(2022·全國·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值域?yàn)椋?/p>
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的定義域?yàn)镾KIPIF1<0,解得SKIPIF1<0,所以該函數(shù)的定義域?yàn)镾KIPIF1<0;所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0;所以函數(shù)SKIPIF1<0的值域是SKIPIF1<0.故選:B.2.(2022·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0且SKIPIF1<0的值域?yàn)镾KIPIF1<0,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,∵函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D.3.(2022·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由題可知,函數(shù)SKIPIF1<0的值域包含SKIPIF1<0,當(dāng)SKIPIF1<0時,符合題意;當(dāng)SKIPIF1<0時,則SKIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0時,顯然不符合題意,故實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A.4.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的值域?yàn)镽,則實(shí)數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】∵SKIPIF1<0,又函數(shù)SKIPIF1<0的值域?yàn)镽,則SKIPIF1<0,解得SKIPIF1<0.故選:C.考點(diǎn)四對數(shù)式比較大小【例4-1】(2022·江蘇常州·模擬預(yù)測)已知SKIPIF1<0,則正確的大小順序是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:B.【例4-2】(2022·新疆烏魯木齊·模擬預(yù)測(理))設(shè)SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】令SKIPIF1<0,則SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上遞增,所以函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,令SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,綜上所述,SKIPIF1<0.故選:D.【一隅三反】1.(2022·浙江·模擬預(yù)測)己知實(shí)數(shù)SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由SKIPIF1<0可得SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,其次,SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0且SKIPIF1<0單調(diào)遞增,所以由SKIPIF1<0可知SKIPIF1<0,綜上,SKIPIF1<0.故選:A2.(2022·全國·模擬預(yù)測)定義在R上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c的大小關(guān)系是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由SKIPIF1<0知:SKIPIF1<0關(guān)于直線x=1對稱.當(dāng)SKIPIF1<0時,SKIPIF1<0,由復(fù)合函數(shù)的單調(diào)性知:SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.又SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:D.3.(2022·浙江金華·三模)若函數(shù)SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列選項(xiàng)正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由題可知SKIPIF1<0SKIPIF1<0,故SKIPIF1<0,∴函數(shù)SKIPIF1<0為偶函數(shù);易知,當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0為單調(diào)遞增函數(shù);又SKIPIF1<0,∴SKIPIF1<0,同理,SKIPIF1<0;又SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0.故選:A.4.(2022·廣東佛山·三模)(多選)已知SKIPIF1<0,則下列不等式成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【解析】選項(xiàng)A:SKIPIF1<0由SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,則SKIPIF1<0.判斷錯誤;選項(xiàng)B:由SKIPIF1<0,可得SKIPIF1<0為SKIPIF1<0上減函數(shù),又SKIPIF1<0,則SKIPIF1<0.判斷正確;選項(xiàng)C:由SKIPIF1<0,可知SKIPIF1<0為R上減函數(shù),又SKIPIF1<0,則SKIPIF1<0由SKIPIF1<0,可知SKIPIF1<0為SKIPIF1<0上增函數(shù),又SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0又SKIPIF1<0為SKIPIF1<0上增函數(shù),則SKIPIF1<0,則SKIPIF1<0.判斷正確;選項(xiàng)D:令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,即SKIPIF1<0.判斷錯誤.故選:BC考點(diǎn)五解對數(shù)式不等式【例5-1】(2022·河南濮陽)已知函數(shù)SKIPIF1<0是R上的偶函數(shù),且SKIPIF1<0在SKIPIF1<0上恒有SKIPIF1<0,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.1,e2 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】因?yàn)楹瘮?shù)SKIPIF1<0是R上的偶函數(shù),所以SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,在SKIPIF1<0上恒有SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,不等式SKIPIF1<0需滿足SKIPIF1<0,解得SKIPIF1<0.故選:C.【例5-2】(2022·湖北·二模)已知函數(shù)SKIPIF1<0,則使不等式SKIPIF1<0成立的x的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由SKIPIF1<0得SKIPIF1<0定義域?yàn)镾KIPIF1<0,SKIPIF1<0,故SKIPIF1<0為偶函數(shù),而SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0可化為SKIPIF1<0,得SKIPIF1<0解得SKIPIF1<0故選:D【一隅三反】1.(2021·河南·高三階段練習(xí)(理))設(shè)函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】依題意,當(dāng)SKIPIF1<0時,由SKIPIF1<0得:SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,由SKIPIF1<0得:SKIPIF1<0,即0<x-1≤2,解得SKIPIF1<0,則SKIPIF1<0,所以不等式SKIPIF1<0的解集為SKIPIF1<0.故選:A2.(2021·江西·奉新縣第一中學(xué)高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由題可知SKIPIF1<0且SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0且定義域?yàn)镾KIPIF1<0關(guān)于原點(diǎn)對稱,即SKIPIF1<0為奇函數(shù),SKIPIF1<0函數(shù)SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上均單調(diào)遞增,SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,即SKIPIF1<0在SKIPIF1<0上也單調(diào)遞增且SKIPIF1<0,又SKIPIF1<0SKIPIF1<0為奇函數(shù),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,不等式SKIPIF1<0SKIPIF1<0等價于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在R上單調(diào)遞增,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0實(shí)數(shù)a的取值范圍是SKIPIF1<0,故選:A.3.(2021·安徽·高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0在SKIPIF1<0上有SKIPIF1<0,且函數(shù)SKIPIF1<0是SKIPIF1<0上的增函數(shù),于是原不等式可化為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0解得SKIPIF1<0,故選:B考點(diǎn)六對數(shù)函數(shù)的定點(diǎn)【例6】(2021·四川·德陽五中)若函數(shù)SKIPIF1<0的圖象經(jīng)過定點(diǎn)SKIPIF1<0,且點(diǎn)SKIPIF1<0在角SKIPIF1<0的終邊上,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】對于函數(shù)SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)恒過定點(diǎn)SKIPIF1<0,又點(diǎn)SK
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藝術(shù)品租賃合同
- 會議場地租賃合同協(xié)議書
- 保密協(xié)議商業(yè)合同
- 無錫工藝職業(yè)技術(shù)學(xué)院《工程安全健康與環(huán)境管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 寧夏民族職業(yè)技術(shù)學(xué)院《賓館酒店管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 菏澤家政職業(yè)學(xué)院《輕工行業(yè)清潔生產(chǎn)及污染控制技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- Unit 5 Revealing Nature Developing ideas The Secret Language of Plants教學(xué)設(shè)計(jì) 2024-2025學(xué)年高中英語人教版選擇性必修第二冊
- 沈陽醫(yī)學(xué)院《機(jī)器人工程專業(yè)導(dǎo)論》2023-2024學(xué)年第二學(xué)期期末試卷
- 寧夏財經(jīng)職業(yè)技術(shù)學(xué)院《主題閱讀(1)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東勝利職業(yè)學(xué)院《化工原理一》2023-2024學(xué)年第二學(xué)期期末試卷
- 2023年司法鑒定程序通則
- 2023年高中音樂課件陽關(guān)三疊(琴歌)
- 胸腔閉式引流護(hù)理-中華護(hù)理學(xué)會團(tuán)體標(biāo)準(zhǔn)
- 公司資產(chǎn)情況說明范文百度
- 醫(yī)療器械中有害殘留物檢驗(yàn)技術(shù)
- 2015-2022年大慶醫(yī)學(xué)高等??茖W(xué)校高職單招語文/數(shù)學(xué)/英語筆試參考題庫含答案解析
- 產(chǎn)品過程特殊特性初始清單(示例)
- 兩篇古典英文版成語故事塞翁失馬
- 中國古代文學(xué)史 馬工程課件(中)13第五編 宋代文學(xué) 第一章 北宋初期文學(xué)
- GB/T 14643.4-2009工業(yè)循環(huán)冷卻水中菌藻的測定方法第4部分:土壤真菌的測定平皿計(jì)數(shù)法
- DL-T 5190.1-2022 電力建設(shè)施工技術(shù)規(guī)范 第1部分:土建結(jié)構(gòu)工程(附條文說明)
評論
0/150
提交評論