2024屆廣西南寧市西大附中中考數(shù)學(xué)最后沖刺模擬試卷含解析_第1頁(yè)
2024屆廣西南寧市西大附中中考數(shù)學(xué)最后沖刺模擬試卷含解析_第2頁(yè)
2024屆廣西南寧市西大附中中考數(shù)學(xué)最后沖刺模擬試卷含解析_第3頁(yè)
2024屆廣西南寧市西大附中中考數(shù)學(xué)最后沖刺模擬試卷含解析_第4頁(yè)
2024屆廣西南寧市西大附中中考數(shù)學(xué)最后沖刺模擬試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆廣西南寧市西大附中中考數(shù)學(xué)最后沖刺模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,AB為⊙O直徑,已知為∠DCB=20°,則∠DBA為()A.50° B.20° C.60° D.70°2.如圖,AB為⊙O的直徑,C為⊙O上的一動(dòng)點(diǎn)(不與A、B重合),CD⊥AB于D,∠OCD的平分線交⊙O于P,則當(dāng)C在⊙O上運(yùn)動(dòng)時(shí),點(diǎn)P的位置()

A.隨點(diǎn)C的運(yùn)動(dòng)而變化B.不變C.在使PA=OA的劣弧上D.無(wú)法確定3.一元二次方程3x2-6x+4=0根的情況是A.有兩個(gè)不相等的實(shí)數(shù)根 B.有兩個(gè)相等的實(shí)數(shù)根 C.有兩個(gè)實(shí)數(shù)根 D.沒有實(shí)數(shù)根4.如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別在BC,CD上,AE=AF,AC與EF相交于點(diǎn)G,下列結(jié)論:①AC垂直平分EF;②BE+DF=EF;③當(dāng)∠DAF=15°時(shí),△AEF為等邊三角形;④當(dāng)∠EAF=60°時(shí),S△ABE=S△CEF,其中正確的是()A.①③ B.②④ C.①③④ D.②③④5.下面運(yùn)算正確的是()A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|6.如圖,AB是一垂直于水平面的建筑物,某同學(xué)從建筑物底端B出發(fā),先沿水平方向向右行走20米到達(dá)點(diǎn)C,再經(jīng)過(guò)一段坡度(或坡比)為i=1:0.75、坡長(zhǎng)為10米的斜坡CD到達(dá)點(diǎn)D,然后再沿水平方向向右行走40米到達(dá)點(diǎn)E(A,B,C,D,E均在同一平面內(nèi)).在E處測(cè)得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米 B.22.4米 C.27.4米 D.28.8米7.如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(-1,0),其部分圖象如圖所示,下列結(jié)論:①4ac<b2;②方程ax2+bx+c=0的兩個(gè)根是x1=-1,x2=3;③3a+c>0;④當(dāng)y>0時(shí),x的取值范圍是-1≤x<3;⑤當(dāng)x<0時(shí),y隨x增大而增大.其中結(jié)論正確的個(gè)數(shù)是()A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)8.在一次酒會(huì)上,每?jī)扇硕贾慌鲆淮伪绻还才霰?5次,則參加酒會(huì)的人數(shù)為(

)A.9人 B.10人 C.11人 D.12人9.已知拋物線的圖像與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),與軸交于點(diǎn).給出下列結(jié)論:①當(dāng)?shù)臈l件下,無(wú)論取何值,點(diǎn)是一個(gè)定點(diǎn);②當(dāng)?shù)臈l件下,無(wú)論取何值,拋物線的對(duì)稱軸一定位于軸的左側(cè);③的最小值不大于;④若,則.其中正確的結(jié)論有()個(gè).A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)10.實(shí)數(shù)a、b在數(shù)軸上的對(duì)應(yīng)點(diǎn)的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)<﹣1 B.a(chǎn)b>0 C.a(chǎn)﹣b<0 D.a(chǎn)+b<011.甲、乙兩位同學(xué)做中國(guó)結(jié),已知甲每小時(shí)比乙少做6個(gè),甲做30個(gè)所用的時(shí)間與乙做45個(gè)所用的時(shí)間相等,求甲每小時(shí)做中國(guó)結(jié)的個(gè)數(shù).如果設(shè)甲每小時(shí)做x個(gè),那么可列方程為()A.= B.=C.= D.=12.兩個(gè)一次函數(shù),,它們?cè)谕恢苯亲鴺?biāo)系中的圖象大致是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,從甲樓底部A處測(cè)得乙樓頂部C處的仰角是30°,從甲樓頂部B處測(cè)得乙樓底部D處的俯角是45°,已知甲樓的高AB是120m,則乙樓的高CD是_____m(結(jié)果保留根號(hào))14.如圖,在ABC中,AB=AC=6,∠BAC=90°,點(diǎn)D、E為BC邊上的兩點(diǎn),分別沿AD、AE折疊,B、C兩點(diǎn)重合于點(diǎn)F,若DE=5,則AD的長(zhǎng)為_____.15.已知關(guān)于x的一元二次方程(a-1)x2-2x+1=0有兩個(gè)不相等的實(shí)數(shù)根,則a的取值范圍是_______________.16.閱讀以下作圖過(guò)程:第一步:在數(shù)軸上,點(diǎn)O表示數(shù)0,點(diǎn)A表示數(shù)1,點(diǎn)B表示數(shù)5,以AB為直徑作半圓(如圖);第二步:以B點(diǎn)為圓心,1為半徑作弧交半圓于點(diǎn)C(如圖);第三步:以A點(diǎn)為圓心,AC為半徑作弧交數(shù)軸的正半軸于點(diǎn)M.請(qǐng)你在下面的數(shù)軸中完成第三步的畫圖(保留作圖痕跡,不寫畫法),并寫出點(diǎn)M表示的數(shù)為______.17.如圖,在矩形ABCD中,AB=,AD=1,把該矩形繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α度得矩形AB′C′D′,點(diǎn)C′落在AB的延長(zhǎng)線上,則圖中陰影部分的面積是_____.18.如圖,線段AB=10,點(diǎn)P在線段AB上,在AB的同側(cè)分別以AP、BP為邊長(zhǎng)作正方形APCD和BPEF,點(diǎn)M、N分別是EF、CD的中點(diǎn),則MN的最小值是_______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)閱讀下列材料:題目:如圖,在△ABC中,已知∠A(∠A<45°),∠C=90°,AB=1,請(qǐng)用sinA、cosA表示sin2A.20.(6分)如圖,⊙O的半徑為4,B為⊙O外一點(diǎn),連結(jié)OB,且OB=6.過(guò)點(diǎn)B作⊙O的切線BD,切點(diǎn)為點(diǎn)D,延長(zhǎng)BO交⊙O于點(diǎn)A,過(guò)點(diǎn)A作切線BD的垂線,垂足為點(diǎn)C.(1)求證:AD平分∠BAC;(2)求AC的長(zhǎng).21.(6分)如圖,在正方形中,點(diǎn)是對(duì)角線上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合),連接過(guò)點(diǎn)作,交直線于點(diǎn).作交直線于點(diǎn),連接.(1)由題意易知,,觀察圖,請(qǐng)猜想另外兩組全等的三角形;;(2)求證:四邊形是平行四邊形;(3)已知,的面積是否存在最小值?若存在,請(qǐng)求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.22.(8分)張老師在黑板上布置了一道題:計(jì)算:2(x+1)2﹣(4x﹣5),求當(dāng)x=和x=﹣時(shí)的值.小亮和小新展開了下面的討論,你認(rèn)為他們兩人誰(shuí)說(shuō)的對(duì)?并說(shuō)明理由.23.(8分)已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點(diǎn),DF與對(duì)角線AC交于點(diǎn)M,過(guò)M作ME⊥CD于點(diǎn)E,∠1=∠1.(1)若CE=1,求BC的長(zhǎng);(1)求證:AM=DF+ME.24.(10分)如圖,將矩形OABC放在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,B(8,6),點(diǎn)D是射線AO上的一點(diǎn),把△BAD沿直線BD折疊,點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′.(1)若點(diǎn)A′落在矩形的對(duì)角線OB上時(shí),OA′的長(zhǎng)=;(2)若點(diǎn)A′落在邊AB的垂直平分線上時(shí),求點(diǎn)D的坐標(biāo);(3)若點(diǎn)A′落在邊AO的垂直平分線上時(shí),求點(diǎn)D的坐標(biāo)(直接寫出結(jié)果即可).25.(10分)某快餐店試銷某種套餐,試銷一段時(shí)間后發(fā)現(xiàn),每份套餐的成本為5元,該店每天固定支出費(fèi)用為600元(不含套餐成本).若每份套餐售價(jià)不超過(guò)10元,每天可銷售400份;若每份套餐售價(jià)超過(guò)10元,每提高1元,每天的銷售量就減少40份.為了便于結(jié)算,每份套餐的售價(jià)(元)取整數(shù),用(元)表示該店每天的利潤(rùn).若每份套餐售價(jià)不超過(guò)10元.①試寫出與的函數(shù)關(guān)系式;②若要使該店每天的利潤(rùn)不少于800元,則每份套餐的售價(jià)應(yīng)不低于多少元?該店把每份套餐的售價(jià)提高到10元以上,每天的利潤(rùn)能否達(dá)到1560元?若能,求出每份套餐的售價(jià)應(yīng)定為多少元時(shí),既能保證利潤(rùn)又能吸引顧客?若不能,請(qǐng)說(shuō)明理由.26.(12分).在一個(gè)不透明的布袋中裝有三個(gè)小球,小球上分別標(biāo)有數(shù)字﹣1、0、2,它們除了數(shù)字不同外,其他都完全相同.隨機(jī)地從布袋中摸出一個(gè)小球,則摸出的球?yàn)闃?biāo)有數(shù)字2的小球的概率為;小麗先從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點(diǎn)M的橫坐標(biāo).再將此球放回、攪勻,然后由小華再?gòu)牟即须S機(jī)摸出一個(gè)小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點(diǎn)M的縱坐標(biāo),請(qǐng)用樹狀圖或表格列出點(diǎn)M所有可能的坐標(biāo),并求出點(diǎn)M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的概率.27.(12分)如圖,某校一幢教學(xué)大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD、小明在山坡的坡腳A處測(cè)得宣傳牌底部D的仰角為60°,然后沿山坡向上走到B處測(cè)得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,(斜坡的鉛直高度與水平寬度的比),經(jīng)過(guò)測(cè)量AB=10米,AE=15米,求點(diǎn)B到地面的距離;求這塊宣傳牌CD的高度.(測(cè)角器的高度忽略不計(jì),結(jié)果保留根號(hào))

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解題分析】題解析:∵AB為⊙O直徑,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故選D.【題目點(diǎn)撥】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.推論:半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑.2、B【解題分析】

因?yàn)镃P是∠OCD的平分線,所以∠DCP=∠OCP,所以∠DCP=∠OPC,則CD∥OP,所以弧AP等于弧BP,所以PA=PB.從而可得出答案.【題目詳解】解:連接OP,∵CP是∠OCD的平分線,∴∠DCP=∠OCP,

又∵OC=OP,

∴∠OCP=∠OPC,

∴∠DCP=∠OPC,

∴CD∥OP,

又∵CD⊥AB,

∴OP⊥AB,

∴,

∴PA=PB.

∴點(diǎn)P是線段AB垂直平分線和圓的交點(diǎn),

∴當(dāng)C在⊙O上運(yùn)動(dòng)時(shí),點(diǎn)P不動(dòng).

故選:B.【題目點(diǎn)撥】本題考查了圓心角、弦、弧之間的關(guān)系,以及平行線的判定和性質(zhì),在同圓或等圓中,等弧對(duì)等弦.3、D【解題分析】

根據(jù)?=b2-4ac,求出?的值,然后根據(jù)?的值與一元二次方程根的關(guān)系判斷即可.【題目詳解】∵a=3,b=-6,c=4,∴?=b2-4ac=(-6)2-4×3×4=-12<0,∴方程3x2-6x+4=0沒有實(shí)數(shù)根.故選D.【題目點(diǎn)撥】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac:當(dāng)?>0時(shí),一元二次方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)?=0時(shí),一元二次方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)?<0時(shí),一元二次方程沒有實(shí)數(shù)根.4、C【解題分析】

①通過(guò)條件可以得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,由正方形的性質(zhì)就可以得出EC=FC,就可以得出AC垂直平分EF,②設(shè)BC=a,CE=y,由勾股定理就可以得出EF與x、y的關(guān)系,表示出BE與EF,即可判斷BE+DF與EF關(guān)系不確定;③當(dāng)∠DAF=15°時(shí),可計(jì)算出∠EAF=60°,即可判斷△EAF為等邊三角形,④當(dāng)∠EAF=60°時(shí),設(shè)EC=x,BE=y,由勾股定理就可以得出x與y的關(guān)系,表示出BE與EF,利用三角形的面積公式分別表示出S△CEF和S△ABE,再通過(guò)比較大小就可以得出結(jié)論.【題目詳解】①四邊形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正確).②設(shè)BC=a,CE=y,∴BE+DF=2(a-y)EF=y,∴BE+DF與EF關(guān)系不確定,只有當(dāng)y=(2?)a時(shí)成立,(故②錯(cuò)誤).③當(dāng)∠DAF=15°時(shí),∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF為等邊三角形.(故③正確).④當(dāng)∠EAF=60°時(shí),設(shè)EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(x)2∴x2=2y(x+y)∵S△CEF=x2,S△ABE=y(x+y),∴S△ABE=S△CEF.(故④正確).綜上所述,正確的有①③④,故選C.【題目點(diǎn)撥】本題考查了正方形的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,等邊三角形的性質(zhì)的運(yùn)用,三角形的面積公式的運(yùn)用,解答本題時(shí)運(yùn)用勾股定理的性質(zhì)解題時(shí)關(guān)鍵.5、D【解題分析】

分別利用整數(shù)指數(shù)冪的性質(zhì)以及合并同類項(xiàng)以及積的乘方運(yùn)算、絕對(duì)值的性質(zhì)分別化簡(jiǎn)求出答案.【題目詳解】解:A,,故此選項(xiàng)錯(cuò)誤;B,,故此選項(xiàng)錯(cuò)誤;C,,故此選項(xiàng)錯(cuò)誤;D,,故此選項(xiàng)正確.所以D選項(xiàng)是正確的.【題目點(diǎn)撥】靈活運(yùn)用整數(shù)指數(shù)冪的性質(zhì)以及合并同類項(xiàng)以及積的乘方運(yùn)算、絕對(duì)值的性質(zhì)可以求出答案.6、A【解題分析】

作BM⊥ED交ED的延長(zhǎng)線于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根據(jù)tan24°=,構(gòu)建方程即可解決問(wèn)題.【題目詳解】作BM⊥ED交ED的延長(zhǎng)線于M,CN⊥DM于N.在Rt△CDN中,∵,設(shè)CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四邊形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故選A.【題目點(diǎn)撥】本題考查的是解直角三角形的應(yīng)用-仰角俯角問(wèn)題,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.7、B【解題分析】

解:∵拋物線與x軸有2個(gè)交點(diǎn),∴b2﹣4ac>0,所以①正確;∵拋物線的對(duì)稱軸為直線x=1,而點(diǎn)(﹣1,0)關(guān)于直線x=1的對(duì)稱點(diǎn)的坐標(biāo)為(3,0),∴方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3,所以②正確;∵x=﹣=1,即b=﹣2a,而x=﹣1時(shí),y=0,即a﹣b+c=0,∴a+2a+c=0,所以③錯(cuò)誤;∵拋物線與x軸的兩點(diǎn)坐標(biāo)為(﹣1,0),(3,0),∴當(dāng)﹣1<x<3時(shí),y>0,所以④錯(cuò)誤;∵拋物線的對(duì)稱軸為直線x=1,∴當(dāng)x<1時(shí),y隨x增大而增大,所以⑤正確.故選:B.【題目點(diǎn)撥】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:對(duì)于二次函數(shù)y=ax2+bx+c(a≠0),二次項(xiàng)系數(shù)a決定拋物線的開口方向和大?。寒?dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口;一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置:當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右;常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)位置:拋物線與y軸交于(0,c);拋物線與x軸交點(diǎn)個(gè)數(shù)由△決定:△=b2﹣4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);△=b2﹣4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);△=b2﹣4ac<0時(shí),拋物線與x軸沒有交點(diǎn).8、C【解題分析】

設(shè)參加酒會(huì)的人數(shù)為x人,根據(jù)每?jī)扇硕贾慌鲆淮伪?,如果一共碰?5次,列出一元二次方程,解之即可得出答案.【題目詳解】設(shè)參加酒會(huì)的人數(shù)為x人,依題可得:

x(x-1)=55,

化簡(jiǎn)得:x2-x-110=0,

解得:x1=11,x2=-10(舍去),

故答案為C.【題目點(diǎn)撥】考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題中的等量關(guān)系列出方程.9、C【解題分析】

①利用拋物線兩點(diǎn)式方程進(jìn)行判斷;

②根據(jù)根的判別式來(lái)確定a的取值范圍,然后根據(jù)對(duì)稱軸方程進(jìn)行計(jì)算;

③利用頂點(diǎn)坐標(biāo)公式進(jìn)行解答;

④利用兩點(diǎn)間的距離公式進(jìn)行解答.【題目詳解】①y=ax1+(1-a)x-1=(x-1)(ax+1).則該拋物線恒過(guò)點(diǎn)A(1,0).故①正確;

②∵y=ax1+(1-a)x-1(a>0)的圖象與x軸有1個(gè)交點(diǎn),

∴△=(1-a)1+8a=(a+1)1>0,

∴a≠-1.

∴該拋物線的對(duì)稱軸為:x=,無(wú)法判定的正負(fù).

故②不一定正確;

③根據(jù)拋物線與y軸交于(0,-1)可知,y的最小值不大于-1,故③正確;

④∵A(1,0),B(-,0),C(0,-1),

∴當(dāng)AB=AC時(shí),,解得:a=,故④正確.

綜上所述,正確的結(jié)論有3個(gè).

故選C.【題目點(diǎn)撥】考查了二次函數(shù)與x軸的交點(diǎn)及其性質(zhì).(1).拋物線是軸對(duì)稱圖形.對(duì)稱軸為直線x=-,對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P;特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0);(1).拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為P(-b/1a,(4ac-b1)/4a),當(dāng)-=0,〔即b=0〕時(shí),P在y軸上;當(dāng)Δ=b1-4ac=0時(shí),P在x軸上;(3).二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小;當(dāng)a>0時(shí),拋物線開口向上;當(dāng)a<0時(shí),拋物線開口向下;|a|越大,則拋物線的開口越?。?).一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置;當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右;(5).常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn);拋物線與y軸交于(0,c);(6).拋物線與x軸交點(diǎn)個(gè)數(shù)Δ=b1-4ac>0時(shí),拋物線與x軸有1個(gè)交點(diǎn);Δ=b1-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);Δ=b1-4ac<0時(shí),拋物線與x軸沒有交點(diǎn).X的取值是虛數(shù)(x=-b±√b1-4ac乘上虛數(shù)i,整個(gè)式子除以1a);當(dāng)a>0時(shí),函數(shù)在x=-b/1a處取得最小值f(-b/1a)=〔4ac-b1〕/4a;在{x|x<-b/1a}上是減函數(shù),在{x|x>-b/1a}上是增函數(shù);拋物線的開口向上;函數(shù)的值域是{y|y≥4ac-b1/4a}相反不變;當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸,這時(shí),函數(shù)是偶函數(shù),解析式變形為y=ax1+c(a≠0).10、C【解題分析】

直接利用a,b在數(shù)軸上的位置,進(jìn)而分別對(duì)各個(gè)選項(xiàng)進(jìn)行分析得出答案.【題目詳解】選項(xiàng)A,從數(shù)軸上看出,a在﹣1與0之間,∴﹣1<a<0,故選項(xiàng)A不合題意;選項(xiàng)B,從數(shù)軸上看出,a在原點(diǎn)左側(cè),b在原點(diǎn)右側(cè),∴a<0,b>0,∴ab<0,故選項(xiàng)B不合題意;選項(xiàng)C,從數(shù)軸上看出,a在b的左側(cè),∴a<b,即a﹣b<0,故選項(xiàng)C符合題意;選項(xiàng)D,從數(shù)軸上看出,a在﹣1與0之間,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故選項(xiàng)D不合題意.故選:C.【題目點(diǎn)撥】本題考查數(shù)軸和有理數(shù)的四則運(yùn)算,解題的關(guān)鍵是掌握利用數(shù)軸表示有理數(shù)的大小.11、A【解題分析】

設(shè)甲每小時(shí)做x個(gè),乙每小時(shí)做(x+6)個(gè),根據(jù)甲做30個(gè)所用時(shí)間與乙做45個(gè)所用時(shí)間相等即可列方程.【題目詳解】設(shè)甲每小時(shí)做x個(gè),乙每小時(shí)做(x+6)個(gè),根據(jù)甲做30個(gè)所用時(shí)間與乙做45個(gè)所用時(shí)間相等可得=.故選A.【題目點(diǎn)撥】本題考查了分式方程的應(yīng)用,找到關(guān)鍵描述語(yǔ),正確找出等量關(guān)系是解決問(wèn)題的關(guān)鍵.12、B【解題分析】

根據(jù)各選項(xiàng)中的函數(shù)圖象判斷出a、b的符號(hào),然后分別確定出兩直線經(jīng)過(guò)的象限以及與y軸的交點(diǎn)位置,即可得解.【題目詳解】解:由圖可知,A、B、C選項(xiàng)兩直線一條經(jīng)過(guò)第一三象限,另一條經(jīng)過(guò)第二四象限,

所以,a、b異號(hào),

所以,經(jīng)過(guò)第一三象限的直線與y軸負(fù)半軸相交,經(jīng)過(guò)第二四象限的直線與y軸正半軸相交,

B選項(xiàng)符合,

D選項(xiàng),a、b都經(jīng)過(guò)第二、四象限,

所以,兩直線都與y軸負(fù)半軸相交,不符合.

故選:B.【題目點(diǎn)撥】本題考查了一次函數(shù)的圖象,一次函數(shù)y=kx+b(k≠0),k>0時(shí),一次函數(shù)圖象經(jīng)過(guò)第一三象限,k<0時(shí),一次函數(shù)圖象經(jīng)過(guò)第二四象限,b>0時(shí)與y軸正半軸相交,b<0時(shí)與y軸負(fù)半軸相交.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、40【解題分析】

利用等腰直角三角形的性質(zhì)得出AB=AD,再利用銳角三角函數(shù)關(guān)系即可得出答案.【題目詳解】解:由題意可得:∠BDA=45°,則AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°=,解得:CD=40(m),故答案為40.【題目點(diǎn)撥】此題主要考查了解直角三角形的應(yīng)用,正確得出tan∠CDA=tan30°=是解題關(guān)鍵.14、或【解題分析】

過(guò)點(diǎn)A作AG⊥BC,垂足為G,根據(jù)等腰直角三角形的性質(zhì)可得AG=BG=CG=6,設(shè)BD=x,則DF=BD=x,EF=7-x,然后利用勾股定理可得到關(guān)于x的方程,從而求得DG的長(zhǎng),繼而可求得AD的長(zhǎng).【題目詳解】如圖所示,過(guò)點(diǎn)A作AG⊥BC,垂足為G,∵AB=AC=6,∠BAC=90°,∴BC==12,∵AB=AC,AG⊥BC,∴AG=BG=CG=6,設(shè)BD=x,則EC=12-DE-BD=12-5-x=7-x,由翻折的性質(zhì)可知:∠DFA=∠B=∠C=∠AFE=45°,DB=DF,EF=FC,∴DF=x,EF=7-x,在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,解得:x=3或x=4,當(dāng)BD=3時(shí),DG=3,AD=,當(dāng)BD=4時(shí),DG=2,AD=,∴AD的長(zhǎng)為或,故答案為:或.【題目點(diǎn)撥】本題考查了翻折的性質(zhì)、勾股定理的應(yīng)用、等腰直角三角形的性質(zhì),正確添加輔助線,靈活運(yùn)用勾股定理是解題的關(guān)鍵.15、a<2且a≠1.【解題分析】

利用一元二次方程根的判別式列不等式,解不等式求出a的取值范圍.【題目詳解】試題解析:∵關(guān)于x的一元二次方程(a-1)x2-2x+l=0有兩個(gè)不相等的實(shí)數(shù)根,∴△=b2-4ac>0,即4-4×(a-2)×1>0,解這個(gè)不等式得,a<2,又∵二次項(xiàng)系數(shù)是(a-1),∴a≠1.故a的取值范圍是a<2且a≠1.【題目點(diǎn)撥】本題考查的是一元二次方程根的判別式,根據(jù)方程有兩不等的實(shí)數(shù)根,得到判別式大于零,求出a的取值范圍,同時(shí)方程是一元二次方程,二次項(xiàng)系數(shù)不為零.16、作圖見解析,【解題分析】解:如圖,點(diǎn)M即為所求.連接AC、BC.由題意知:AB=4,BC=1.∵AB為圓的直徑,∴∠ACB=90°,則AM=AC===,∴點(diǎn)M表示的數(shù)為.故答案為.點(diǎn)睛:本題主要考查作圖﹣尺規(guī)作圖,解題的關(guān)鍵是熟練掌握尺規(guī)作圖和圓周角定理及勾股定理.17、【解題分析】

∵在矩形ABCD中,AB=,∠DAC=60°,∴DC=,AD=1.由旋轉(zhuǎn)的性質(zhì)可知:D′C′=,AD′=1,∴tan∠D′AC′==,∴∠D′AC′=60°.∴∠BAB′=30°,∴S△AB′C′=×1×=,S扇形BAB′==.S陰影=S△AB′C′-S扇形BAB′=-.故答案為-.【題目點(diǎn)撥】錯(cuò)因分析

中檔題.失分原因有2點(diǎn):(1)不能準(zhǔn)確地將陰影部分面積轉(zhuǎn)化為易求特殊圖形的面積;(2)不能根據(jù)矩形的邊求出α的值.18、2【解題分析】

設(shè)MN=y,PC=x,根據(jù)正方形的性質(zhì)和勾股定理列出y1關(guān)于x的二次函數(shù)關(guān)系式,求二次函數(shù)的最值即可.【題目詳解】作MG⊥DC于G,如圖所示:設(shè)MN=y,PC=x,根據(jù)題意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴當(dāng)10-1x=0,即x=2時(shí),y1最小值=12,∴y最小值=2.即MN的最小值為2;故答案為:2.【題目點(diǎn)撥】本題考查了正方形的性質(zhì)、勾股定理、二次函數(shù)的最值.熟練掌握勾股定理和二次函數(shù)的最值是解決問(wèn)題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、sin2A=2cosAsinA【解題分析】

先作出直角三角形的斜邊的中線,進(jìn)而求出,∠CED=2∠A,最后用三角函數(shù)的定義即可得出結(jié)論【題目詳解】解:如圖,作Rt△ABC的斜邊AB上的中線CE,則∴∠CED=2∠A,過(guò)點(diǎn)C作CD⊥AB于D,在Rt△ACD中,CD=ACsinA,在Rt△ABC中,AC=ABcosA=cosA在Rt△CED中,sin2A=sin∠CED==2ACsinA=2cosAsinA【題目點(diǎn)撥】此題主要解直角三角形,銳角三角函數(shù)的定義,直角三角形的斜邊的中線等于斜邊的一半,構(gòu)造出直角三角形和∠CED=2∠A是解本題的關(guān)鍵.20、(1)證明見解析;(2)AC=.【解題分析】(1)證明:連接OD.∵BD是⊙O的切線,∴OD⊥BD.∵AC⊥BD,∴OD∥AC,∴∠2=∠1.∵OA=OD.∴∠1=∠1,∴∠1=∠2,即AD平分∠BAC.(2)解:∵OD∥AC,∴△BOD∽△BAC,∴,即.解得.21、(1);(2)見解析;(3)存在,2【解題分析】

(1)利用正方形的性質(zhì)及全等三角形的判定方法證明全等即可;(2)由(1)可知,則有,從而得到,最后利用一組對(duì)邊平行且相等即可證明;(3)由(1)可知,則,從而得到是等腰直角三角形,則當(dāng)最短時(shí),的面積最小,再根據(jù)AB的值求出PB的最小值即可得出答案.【題目詳解】解:(1)四邊形是正方形,,,,,,在和中,在和中,,故答案為;(2)證明:由(1)可知,,四邊形是平行四邊形.(3)解:存在,理由如下:是等腰直角三角形,最短時(shí),的面積最小,當(dāng)時(shí),最短,此時(shí),的面積最小為.【題目點(diǎn)撥】本題主要考查全等三角形的判定及性質(zhì),平行四邊形的判定,掌握全等三角形的判定方法和平行四邊形的判定方法是解題的關(guān)鍵.22、小亮說(shuō)的對(duì),理由見解析【解題分析】

先根據(jù)完全平方公式和去括號(hào)法則計(jì)算,再合并同類項(xiàng),最后代入計(jì)算即可求解.【題目詳解】2(x+1)2﹣(4x﹣5)=2x2+4x+2﹣4x+5,=2x2+7,當(dāng)x=時(shí),原式=+7=7;當(dāng)x=﹣時(shí),原式=+7=7.故小亮說(shuō)的對(duì).【題目點(diǎn)撥】本題考查完全平方公式和去括號(hào),解題的關(guān)鍵是明確完全平方公式和去括號(hào)的計(jì)算方法.23、(1)1;(1)見解析.【解題分析】試題分析:(1)根據(jù)菱形的對(duì)邊平行可得AB∥CD,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠1=∠ACD,所以∠ACD=∠1,根據(jù)等角對(duì)等邊的性質(zhì)可得CM=DM,再根據(jù)等腰三角形三線合一的性質(zhì)可得CE=DE,然后求出CD的長(zhǎng)度,即為菱形的邊長(zhǎng)BC的長(zhǎng)度;

(1)先利用“邊角邊”證明△CEM和△CFM全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得ME=MF,延長(zhǎng)AB交DF于點(diǎn)G,然后證明∠1=∠G,根據(jù)等角對(duì)等邊的性質(zhì)可得AM=GM,再利用“角角邊”證明△CDF和△BGF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得GF=DF,最后結(jié)合圖形GM=GF+MF即可得證.試題解析:(1)∵四邊形ABCD是菱形,

∴AB∥CD,

∴∠1=∠ACD,

∵∠1=∠1,

∴∠ACD=∠1,

∴MC=MD,

∵M(jìn)E⊥CD,

∴CD=1CE,

∵CE=1,

∴CD=1,

∴BC=CD=1;

(1)AM=DF+ME證明:如圖,∵F為邊BC的中點(diǎn),

∴BF=CF=BC,

∴CF=CE,

在菱形ABCD中,AC平分∠BCD,

∴∠ACB=∠ACD,

在△CEM和△CFM中,

∵,

∴△CEM≌△CFM(SAS),

∴ME=MF,

延長(zhǎng)AB交DF的延長(zhǎng)線于點(diǎn)G,

∵AB∥CD,

∴∠G=∠1,

∵∠1=∠1,

∴∠1=∠G,

∴AM=MG,

在△CDF和△BGF中,

∵∴△CDF≌△BGF(AAS),

∴GF=DF,

由圖形可知,GM=GF+MF,

∴AM=DF+ME.24、(1)1;(2)點(diǎn)D(8﹣23,0);(3)點(diǎn)D的坐標(biāo)為(35﹣1,0)或(﹣35﹣1,0).【解題分析】分析:(Ⅰ)由點(diǎn)B的坐標(biāo)知OA=8、AB=1、OB=10,根據(jù)折疊性質(zhì)可得BA=BA′=1,據(jù)此可得答案;(Ⅱ)連接AA′,利用折疊的性質(zhì)和中垂線的性質(zhì)證△BAA′是等邊三角形,可得∠A′BD=∠ABD=30°,據(jù)此知AD=ABtan∠ABD=23,繼而可得答案;(Ⅲ)分點(diǎn)D在OA上和點(diǎn)D在AO延長(zhǎng)線上這兩種情況,利用相似三角形的判定和性質(zhì)分別求解可得.詳解:(Ⅰ)如圖1,由題意知OA=8、AB=1,∴OB=10,由折疊知,BA=BA′=1,∴OA′=1.故答案為1;(Ⅱ)如圖2,連接AA′.∵點(diǎn)A′落在線段AB的中垂線上,∴BA=AA′.∵△BDA′是由△BDA折疊得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等邊三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=23,∴OD=OA﹣AD=8﹣23,∴點(diǎn)D(8﹣23,0);(Ⅲ)①如圖3,當(dāng)點(diǎn)D在OA上時(shí).由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點(diǎn)A′在線段OA的中垂線上,∴BM=AN=12OA=4,∴A′M=A'B2-B∴A′N=MN﹣A′M=AB﹣A′M=1﹣25,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,則A'MDN=BMA'解得:DN=35﹣5,則OD=ON+DN=4+35﹣5=35﹣1,∴D(35﹣1,0);②如圖4,當(dāng)點(diǎn)D在AO延長(zhǎng)線上時(shí),過(guò)點(diǎn)A′作x軸的平行線交y軸于點(diǎn)M,延長(zhǎng)AB交所作直線于點(diǎn)N,則BN=CM,MN=BC=OA=8,由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點(diǎn)A′在線段OA的中垂線上,∴A′M=A′N=12MN則MC=BN=A'B2-A'N2=25,∴MO由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,則MEA'N=MA'NB解得:ME=855,則OE=MO﹣ME=1+∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴DOA'M=OEME,即解得:DO=33+1,則點(diǎn)D的坐標(biāo)為(﹣35﹣1,0).綜上,點(diǎn)D的坐標(biāo)為(35﹣1,0)或(﹣35﹣1,0).點(diǎn)睛:本題主要考查四邊形的綜合問(wèn)題,解題的關(guān)鍵是熟練掌握折疊變換的性質(zhì)、矩形的性質(zhì)、相似三角形的判定與性質(zhì)及勾股定理等知識(shí)點(diǎn).25、(1)①y=400x﹣1.(5<x≤10);②9元或10元;(2)能,11元.【解題分析】

(1)、根據(jù)利潤(rùn)=(售價(jià)-進(jìn)價(jià))×數(shù)量-固定

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論