版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省長沙市重點名校2024年中考數(shù)學(xué)最后沖刺濃縮精華卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.我國古代數(shù)學(xué)名著《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設(shè)大馬有x匹,小馬有y匹,那么可列方程組為()A. B. C. D.2.一個圓的內(nèi)接正六邊形的邊長為2,則該圓的內(nèi)接正方形的邊長為()A. B.2 C.2 D.43.如圖,AD∥BC,AC平分∠BAD,若∠B=40°,則∠C的度數(shù)是()A.40° B.65° C.70° D.80°4.下列運算正確的是()A.a(chǎn)3+a3=a6 B.a(chǎn)6÷a2=a4 C.a(chǎn)3?a5=a15 D.(a3)4=a75.如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點D,連接CD,則△BDC的周長為()A.8 B.9 C.5+ D.5+6.已知平面內(nèi)不同的兩點A(a+2,4)和B(3,2a+2)到x軸的距離相等,則a的值為(
)A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣57.要使式子有意義,的取值范圍是()A. B.且 C..或 D.且8.如圖,在平面直角坐標(biāo)系xOy中,點A從出發(fā),繞點O順時針旋轉(zhuǎn)一周,則點A不經(jīng)過()A.點M B.點N C.點P D.點Q9.如果一個扇形的弧長等于它的半徑,那么此扇形稱為“等邊扇形”.將半徑為5的“等邊扇形”圍成一個圓錐,則圓錐的側(cè)面積為()A. B.π C.50 D.50π10.某單位若干名職工參加普法知識競賽,將成績制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖,根據(jù)圖中提供的信息,這些職工成績的中位數(shù)和平均數(shù)分別是()A.94分,96分 B.96分,96分C.94分,96.4分 D.96分,96.4分二、填空題(本大題共6個小題,每小題3分,共18分)11.對于函數(shù),若x>2,則y______3(填“>”或“<”).12.圓錐體的底面周長為6π,側(cè)面積為12π,則該圓錐體的高為.13.如圖,DA⊥CE于點A,CD∥AB,∠1=30°,則∠D=_____.14.如圖,△ABC中,點D、E分別在邊AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,則EC的長是_____.15.如圖,AB∥CD,BE交CD于點D,CE⊥BE于點E,若∠B=34°,則∠C的大小為________度.16.如圖,直線y=x與雙曲線y=交于A,B兩點,OA=2,點C在x軸的正半軸上,若∠ACB=90°,則點C的坐標(biāo)為______.三、解答題(共8題,共72分)17.(8分)如圖(1),P為△ABC所在平面上一點,且∠APB=∠BPC=∠CPA=120°,則點P叫做△ABC的費馬點.(1)如果點P為銳角△ABC的費馬點,且∠ABC=60°.①求證:△ABP∽△BCP;②若PA=3,PC=4,則PB=.(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD相交于P點.如圖(2)①求∠CPD的度數(shù);②求證:P點為△ABC的費馬點.18.(8分)如圖,二次函數(shù)y=ax2+2x+c的圖象與x軸交于點A(﹣1,0)和點B,與y軸交于點C(0,3).(1)求該二次函數(shù)的表達(dá)式;(2)過點A的直線AD∥BC且交拋物線于另一點D,求直線AD的函數(shù)表達(dá)式;(3)在(2)的條件下,請解答下列問題:①在x軸上是否存在一點P,使得以B、C、P為頂點的三角形與△ABD相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由;②動點M以每秒1個單位的速度沿線段AD從點A向點D運動,同時,動點N以每秒個單位的速度沿線段DB從點D向點B運動,問:在運動過程中,當(dāng)運動時間t為何值時,△DMN的面積最大,并求出這個最大值.19.(8分)隨著社會的發(fā)展,通過微信朋友圈發(fā)布自己每天行走的步數(shù)已經(jīng)成為一種時尚.“健身達(dá)人”小陳為了了解他的好友的運動情況.隨機(jī)抽取了部分好友進(jìn)行調(diào)查,把他們6月1日那天行走的情況分為四個類別:A(0~5000步)(說明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),統(tǒng)計結(jié)果如圖所示:請依據(jù)統(tǒng)計結(jié)果回答下列問題:本次調(diào)查中,一共調(diào)查了位好友.已知A類好友人數(shù)是D類好友人數(shù)的5倍.①請補(bǔ)全條形圖;②扇形圖中,“A”對應(yīng)扇形的圓心角為度.③若小陳微信朋友圈共有好友150人,請根據(jù)調(diào)查數(shù)據(jù)估計大約有多少位好友6月1日這天行走的步數(shù)超過10000步?20.(8分)解方程:x2-4x-5=021.(8分)如圖,已知是直角坐標(biāo)平面上三點.將先向右平移3個單位,再向上平移3個單位,畫出平移后的圖形;以點為位似中心,位似比為2,將放大,在軸右側(cè)畫出放大后的圖形;填空:面積為.22.(10分)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,△AOB是等腰直角三角形,∠AOB=90°,點A(2,1).(1)求點B的坐標(biāo);(2)求經(jīng)過A、O、B三點的拋物線的函數(shù)表達(dá)式;(3)在(2)所求的拋物線上,是否存在一點P,使四邊形ABOP的面積最大?若存在,求出點P的坐標(biāo);若不存在,請說明理由.23.(12分)已知:如圖,△MNQ中,MQ≠NQ.(1)請你以MN為一邊,在MN的同側(cè)構(gòu)造一個與△MNQ全等的三角形,畫出圖形,并簡要說明構(gòu)造的方法;(2)參考(1)中構(gòu)造全等三角形的方法解決下面問題:如圖,在四邊形ABCD中,,∠B=∠D.求證:CD=AB.24.某市旅游部門統(tǒng)計了今年“五?一”放假期間該市A、B、C、D四個旅游景區(qū)的旅游人數(shù),并繪制出如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,根據(jù)圖中的信息解答下列問題:(1)求今年“五?一”放假期間該市這四個景點共接待游客的總?cè)藬?shù);(2)扇形統(tǒng)計圖中景點A所對應(yīng)的圓心角的度數(shù)是多少,請直接補(bǔ)全條形統(tǒng)計圖;(3)根據(jù)預(yù)測,明年“五?一”放假期間將有90萬游客選擇到該市的這四個景點旅游,請你估計有多少人會選擇去景點D旅游?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】
設(shè)大馬有x匹,小馬有y匹,根據(jù)題意可得等量關(guān)系:①大馬數(shù)+小馬數(shù)=100;②大馬拉瓦數(shù)+小馬拉瓦數(shù)=100,根據(jù)等量關(guān)系列出方程組即可.【題目詳解】解:設(shè)大馬有x匹,小馬有y匹,由題意得:,故選C.【題目點撥】此題主要考查了由實際問題抽象出二元一次方程組,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程組.2、B【解題分析】
圓內(nèi)接正六邊形的邊長是1,即圓的半徑是1,則圓的內(nèi)接正方形的對角線長是2,進(jìn)而就可求解.【題目詳解】解:∵圓內(nèi)接正六邊形的邊長是1,∴圓的半徑為1.那么直徑為2.圓的內(nèi)接正方形的對角線長為圓的直徑,等于2.∴圓的內(nèi)接正方形的邊長是1.故選B.【題目點撥】本題考查正多邊形與圓,關(guān)鍵是利用知識點:圓內(nèi)接正六邊形的邊長和圓的半徑相等;圓的內(nèi)接正方形的對角線長為圓的直徑解答.3、C【解題分析】
根據(jù)平行線性質(zhì)得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度數(shù).【題目詳解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=40°,∴∠BAD=140°,∵AC平分∠DAB,∴∠DAC=∠BAD=70°,∵A∥BC,∴∠C=∠DAC=70°,故選C.【題目點撥】本題考查了平行線性質(zhì)和角平分線定義,關(guān)鍵是求出∠DAC或∠BAC的度數(shù).4、B【解題分析】
根據(jù)同底數(shù)冪的乘法、除法、冪的乘方依次計算即可得到答案.【題目詳解】A、a3+a3=2a3,故A錯誤;B、a6÷a2=a4,故B正確;C、a3?a5=a8,故C錯誤;D、(a3)4=a12,故D錯誤.故選:B.【題目點撥】此題考查整式的計算,正確掌握同底數(shù)冪的乘法、除法、冪的乘方的計算方法是解題的關(guān)鍵.5、C【解題分析】
過點C作CM⊥AB,垂足為M,根據(jù)勾股定理求出BC的長,再根據(jù)DE是線段AC的垂直平分線可得△ADC等邊三角形,則CD=AD=AC=4,代入數(shù)值計算即可.【題目詳解】過點C作CM⊥AB,垂足為M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是線段AC的垂直平分線,∴AD=DC,∵∠A=60°,∴△ADC等邊三角形,∴CD=AD=AC=4,∴△BDC的周長=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案選C.【題目點撥】本題考查了勾股定理,解題的關(guān)鍵是熟練的掌握勾股定理的運算.6、A【解題分析】分析:根據(jù)點A(a+2,4)和B(3,2a+2)到x軸的距離相等,得到4=|2a+2|,即可解答.詳解:∵點A(a+2,4)和B(3,2a+2)到x軸的距離相等,∴4=|2a+2|,a+2≠3,解得:a=?3,故選A.點睛:考查點的坐標(biāo)的相關(guān)知識;用到的知識點為:到x軸和y軸的距離相等的點的橫縱坐標(biāo)相等或互為相反數(shù).7、D【解題分析】
根據(jù)二次根式和分式有意義的條件計算即可.【題目詳解】解:∵有意義,∴a+2≥0且a≠0,解得a≥-2且a≠0.故本題答案為:D.【題目點撥】二次根式和分式有意義的條件是本題的考點,二次根式有意義的條件是被開方數(shù)大于等于0,分式有意義的條件是分母不為0.8、C【解題分析】
根據(jù)旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等,逐一判斷即可.【題目詳解】解:連接OA、OM、ON、OP,根據(jù)旋轉(zhuǎn)的性質(zhì),點A的對應(yīng)點到旋轉(zhuǎn)中心的距離與OA的長度應(yīng)相等根據(jù)網(wǎng)格線和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5∵OA=OM=ON=OQ≠OP∴則點A不經(jīng)過點P故選C.【題目點撥】此題考查的是旋轉(zhuǎn)的性質(zhì)和勾股定理,掌握旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等和用勾股定理求線段的長是解決此題的關(guān)鍵.9、A【解題分析】
根據(jù)新定義得到扇形的弧長為5,然后根據(jù)扇形的面積公式求解.【題目詳解】解:圓錐的側(cè)面積=?5?5=.故選A.【題目點撥】本題考查圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.10、D【解題分析】
解:總?cè)藬?shù)為6÷10%=60(人),則91分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30與31個數(shù)據(jù)都是96分,這些職工成績的中位數(shù)是(96+96)÷2=96;這些職工成績的平均數(shù)是(92×6+91×12+96×15+98×18+100×9)÷60=(552+1128+1110+1761+900)÷60=5781÷60=96.1.故選D.【題目點撥】本題考查1.中位數(shù);2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖;1.算術(shù)平均數(shù),掌握概念正確計算是關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、<【解題分析】
根據(jù)反比例函數(shù)的性質(zhì)即可解答.【題目詳解】當(dāng)x=2時,,∵k=6時,∴y隨x的增大而減小∴x>2時,y<3故答案為:<【題目點撥】此題主要考查了反比例函數(shù)的性質(zhì),解題的關(guān)鍵在于利用反比例函數(shù)圖象上點的坐標(biāo)特點判斷函數(shù)值的取值范圍.12、【解題分析】試題分析:用周長除以2π即為圓錐的底面半徑;根據(jù)圓錐的側(cè)面積=×側(cè)面展開圖的弧長×母線長可得圓錐的母線長,利用勾股定理可得圓錐的高.試題解析:∵圓錐的底面周長為6π,∴圓錐的底面半徑為6π÷2π="3,"∵圓錐的側(cè)面積=×側(cè)面展開圖的弧長×母線長,∴母線長=2×12π÷6π="4,"∴這個圓錐的高是考點:圓錐的計算.13、60°【解題分析】
先根據(jù)垂直的定義,得出∠BAD=60°,再根據(jù)平行線的性質(zhì),即可得出∠D的度數(shù).【題目詳解】∵DA⊥CE,∴∠DAE=90°,∵∠1=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案為60°.【題目點撥】本題主要考查了平行線的性質(zhì)以及垂線的定義,解題時注意:兩直線平行,內(nèi)錯角相等.14、【解題分析】
由△ABC中,點D、E分別在邊AB、BC上,DE∥AC,根據(jù)平行線分線段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【題目詳解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=﹣3=.故答案為.【題目點撥】考查了平行線分線段成比例定理,解題時注意:平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應(yīng)成比例.15、56【解題分析】
解:∵AB∥CD,∴又∵CE⊥BE,∴Rt△CDE中,故答案為56.16、(2,0)【解題分析】
根據(jù)直線y=x與雙曲線y=交于A,B兩點,OA=2,可得AB=2AO=4,再根據(jù)Rt△ABC中,OC=AB=2,即可得到點C的坐標(biāo)【題目詳解】如圖所示,∵直線y=x與雙曲線y=交于A,B兩點,OA=2,∴AB=2AO=4,又∵∠ACB=90°,∴Rt△ABC中,OC=AB=2,又∵點C在x軸的正半軸上,∴C(2,0),故答案為(2,0).【題目點撥】本題主要考查了反比例函數(shù)與一次函數(shù)交點問題,解決問題的關(guān)鍵是利用直角三角形斜邊上中線的性質(zhì)得到OC的長.三、解答題(共8題,共72分)17、(1)①證明見解析;②23【解題分析】試題分析:(1)①根據(jù)題意,利用內(nèi)角和定理及等式性質(zhì)得到一對角相等,利用兩角相等的三角形相似即可得證;②由三角形ABP與三角形BCP相似,得比例,將PA與PC的長代入求出PB的長即可;(2)①根據(jù)三角形ABE與三角形ACD為等邊三角形,利用等邊三角形的性質(zhì)得到兩對邊相等,兩個角為60°,利用等式的性質(zhì)得到夾角相等,利用SAS得到三角形ACE與三角形ABD全等,利用全等三角形的對應(yīng)角相等得到∠1=∠2,再由對頂角相等,得到∠5=∠6,即可求出所求角度數(shù);②由三角形ADF與三角形CPF相似,得到比例式,變形得到積的恒等式,再由對頂角相等,利用兩邊成比例,且夾角相等的三角形相似得到三角形AFP與三角形CFD相似,利用相似三角形對應(yīng)角相等得到∠APF為60°,由∠APD+∠DPC,求出∠APC為120°,進(jìn)而確定出∠APB與∠BPC都為120°,即可得證.試題解析:(1)證明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,②解:∵△ABP∽△BCP,∴PAPB∴PB2=PA?PC=12,∴PB=23;(2)解:①∵△ABE與△ACD都為等邊三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,AC=AD∠EAC=∠BAD∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②證明:∵△ADF∽△CFP,∴AF?PF=DF?CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P點為△ABC的費馬點.考點:相似形綜合題18、(1)y=﹣x2+2x+3;(2)y=﹣x﹣1;(3)P()或P(﹣4.5,0);當(dāng)t=時,S△MDN的最大值為.【解題分析】
(1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到結(jié)果;
(2)在y=-x2+2x+3中,令y=0,則-x2+2x+3=0,得到B(3,0),由已知條件得直線BC的解析式為y=-x+3,由于AD∥BC,設(shè)直線AD的解析式為y=-x+b,即可得到結(jié)論;
(3)①由BC∥AD,得到∠DAB=∠CBA,全等只要當(dāng)或時,△PBC∽△ABD,解方程組得D(4,?5),求得設(shè)P的坐標(biāo)為(x,0),代入比例式解得或x=?4.5,即可得到或P(?4.5,0);
②過點B作BF⊥AD于F,過點N作NE⊥AD于E,在Rt△AFB中,∠BAF=45°,于是得到sin∠BAF求得求得由于于是得到即可得到結(jié)果.【題目詳解】(1)由題意知:解得∴二次函數(shù)的表達(dá)式為(2)在中,令y=0,則解得:∴B(3,0),由已知條件得直線BC的解析式為y=?x+3,∵AD∥BC,∴設(shè)直線AD的解析式為y=?x+b,∴0=1+b,∴b=?1,∴直線AD的解析式為y=?x?1;(3)①∵BC∥AD,∴∠DAB=∠CBA,∴只要當(dāng):或時,△PBC∽△ABD,解得D(4,?5),∴設(shè)P的坐標(biāo)為(x,0),即或解得或x=?4.5,∴或P(?4.5,0),②過點B作BF⊥AD于F,過點N作NE⊥AD于E,在Rt△AFB中,∴sin∠BAF∴∴∵又∵∴∴當(dāng)時,的最大值為【題目點撥】屬于二次函數(shù)的綜合題,考查待定系數(shù)法求二次函數(shù)解析式,銳角三角形函數(shù),相似三角形的判定與性質(zhì),二次函數(shù)的最值等,綜合性比較強(qiáng),難度較大.19、(1)30;(2)①補(bǔ)圖見解析;②120;③70人.【解題分析】分析:(1)由B類別人數(shù)及其所占百分比可得總?cè)藬?shù);(2)①設(shè)D類人數(shù)為a,則A類人數(shù)為5a,根據(jù)總?cè)藬?shù)列方程求得a的值,從而補(bǔ)全圖形;②用360°乘以A類別人數(shù)所占比例可得;③總?cè)藬?shù)乘以樣本中C、D類別人數(shù)和所占比例.詳解:(1)本次調(diào)查的好友人數(shù)為6÷20%=30人,故答案為:30;(2)①設(shè)D類人數(shù)為a,則A類人數(shù)為5a,根據(jù)題意,得:a+6+12+5a=30,解得:a=2,即A類人數(shù)為10、D類人數(shù)為2,補(bǔ)全圖形如下:②扇形圖中,“A”對應(yīng)扇形的圓心角為360°×=120°,故答案為:120;③估計大約6月1日這天行走的步數(shù)超過10000步的好友人數(shù)為150×=70人.點睛:此題主要考查了條形統(tǒng)計圖、扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).20、x1="-1,"x2=5【解題分析】根據(jù)十字相乘法因式分解解方程即可.21、(1)詳見解析;(2)詳見解析;(3).【解題分析】
(1)分別畫出A、B、C三點的對應(yīng)點即可解決問題;(2)由(1)得各頂點的坐標(biāo),然后利用位似圖形的性質(zhì),即可求得各點的坐標(biāo),然后在圖中作出位似三角形即可.(3)求得所在矩形的面積減去三個三角形的面積即可.【題目詳解】(1)如圖,即為所求作;(2)如圖,即為所求作;(3)面積=4×4-×2×4-×2×2-×2×4=6.【題目點撥】本題主要考查了利用平移變換作圖、位似作圖以及求三角形的面積,作圖時要先找到圖形的關(guān)鍵點,把這幾個關(guān)鍵點按平移的方向和距離確定對應(yīng)點后,再順序連接對應(yīng)點即可得到平移后的圖形.22、(1)B(-1.2);(2)y=;(3)見解析.【解題分析】
(1)過A作AC⊥x軸于點C,過B作BD⊥x軸于點D,則可證明△ACO≌△ODB,則可求得OD和BD的長,可求得B點坐標(biāo);(2)根據(jù)A、B、O三點的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(3)由四邊形ABOP可知點P在線段AO的下方,過P作PE∥y軸交線段OA于點E,可求得直線OA解析式,設(shè)出P點坐標(biāo),則可表示出E點坐標(biāo),可表示出PE的長,進(jìn)一步表示出△POA的面積,則可得到四邊形ABOP的面積,再利用二次函數(shù)的性質(zhì)可求得其面積最大時P點的坐標(biāo).【題目詳解】(1)如圖1,過A作AC⊥x軸于點C,過B作BD⊥x軸于點D,∵△AOB為等腰三角形,∴AO=BO,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD,在△ACO和△ODB中∴△ACO≌△ODB(AAS),∵A(2,1),∴OD=AC=1,BD=OC=2,∴B(-1,2);(2)∵拋物線過O點,∴可設(shè)拋物線解析式為y=ax2+bx,把A、B兩點坐標(biāo)代入可得,解得,∴經(jīng)過A、B、O原點的拋物線解析式為y=x2-x;(3)∵四邊形ABOP,∴可知點P在線段OA的下方,過P作PE∥y軸交AO于點E,如圖2,設(shè)直線AO解析式為y=kx,∵A(2,1),∴k=,∴直線AO解析式為y=x,設(shè)P點坐標(biāo)為(t,t2-t),則E(t,t),∴PE=t-(t2-t)=-t2+t=-(t-1)2+,∴S△AOP=PE×2=PE═-(t-1)2+,由A(2,1)可求得OA=OB=,∴S△AOB=AO?BO=,∴S四邊形ABOP=S△AOB+S△AOP=-(t-1)2++=,∵-<0,∴當(dāng)t=1時,四邊形ABOP的面積最大,此時P點坐標(biāo)為(1,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐飲服務(wù)業(yè)信息安全應(yīng)急預(yù)案
- 臨時用車私家車租賃服務(wù)合同
- 國際物流中心土地租賃合同鄉(xiāng)鎮(zhèn)
- 2024公寓購房合同范文
- 2024莊園裝修物業(yè)管理合同范本
- 內(nèi)科診所主治醫(yī)師聘用協(xié)議范本
- 2024標(biāo)準(zhǔn)購房合同書范文
- 2024臨時用工合同最長期限臨時用工合同協(xié)議版
- 2024個人工程改造合同范本
- 2024年企業(yè)管理培訓(xùn)合作合同
- 期中測試卷(1-4單元)試題-2024-2025學(xué)年人教版數(shù)學(xué)六年級上冊
- 建筑工程項目中的精益建造和可持續(xù)發(fā)展
- 裸子植物和被子植物課件 2024-2025學(xué)年人教版生物七年級上冊
- 2024年電力行業(yè)風(fēng)力發(fā)電運行檢修職業(yè)技能考試題庫(含答案)
- 2024水利云播五大員考試題庫及答案
- 散文化小說-從2023年高考陳村《給兒子》說開去
- 大國三農(nóng)II-農(nóng)業(yè)科技版智慧樹知到期末考試答案章節(jié)答案2024年中國農(nóng)業(yè)大學(xué)
- 綠化養(yǎng)護(hù)服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 專題12 應(yīng)用文寫作-【中職專用】備戰(zhàn)2025年對口高考語文題型專練 (解析版)
- 責(zé)任保險行業(yè)發(fā)展預(yù)測分析報告
- 中職語文基礎(chǔ)模塊上冊-第一次月考卷(1)【知識范圍:1-2單元】解析版
評論
0/150
提交評論