2024屆江蘇省鎮(zhèn)江市潤州區(qū)市級名校中考數學押題卷含解析_第1頁
2024屆江蘇省鎮(zhèn)江市潤州區(qū)市級名校中考數學押題卷含解析_第2頁
2024屆江蘇省鎮(zhèn)江市潤州區(qū)市級名校中考數學押題卷含解析_第3頁
2024屆江蘇省鎮(zhèn)江市潤州區(qū)市級名校中考數學押題卷含解析_第4頁
2024屆江蘇省鎮(zhèn)江市潤州區(qū)市級名校中考數學押題卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024學年江蘇省鎮(zhèn)江市潤州區(qū)市級名校中考數學押題卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉60°到△AB′C′的位置,連接C′B,則C′B的長為()A. B. C. D.12.下列說法中正確的是()A.檢測一批燈泡的使用壽命適宜用普查.B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就一定有5次正面朝上.C.“367人中有兩人是同月同日生”為必然事件.D.“多邊形內角和與外角和相等”是不可能事件.3.如圖,將矩形ABCD沿EM折疊,使頂點B恰好落在CD邊的中點N上.若AB=6,AD=9,則五邊形ABMND的周長為()A.28 B.26 C.25 D.224.已知二次函數y=ax1+bx+c+1的圖象如圖所示,頂點為(﹣1,0),下列結論:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根為x1=x1=﹣1;⑤若點B(﹣,y1)、C(﹣,y1)為函數圖象上的兩點,則y1>y1.其中正確的個數是()A.1 B.3 C.4 D.55.一組數據3、2、1、2、2的眾數,中位數,方差分別是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.26.已知圓內接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.7.某服裝店用10000元購進一批某品牌夏季襯衫若干件,很快售完;該店又用14700元錢購進第二批這種襯衫,所進件數比第一批多40%,每件襯衫的進價比第一批每件襯衫的進價多10元,求第一批購進多少件襯衫?設第一批購進x件襯衫,則所列方程為()A.﹣10= B.+10=C.﹣10= D.+10=8.已知函數y=的圖象如圖,當x≥﹣1時,y的取值范圍是()A.y<﹣1 B.y≤﹣1 C.y≤﹣1或y>0 D.y<﹣1或y≥09.中國幅員遼闊,陸地面積約為960萬平方公里,“960萬”用科學記數法表示為()A.0.96×107 B.9.6×106 C.96×105 D.9.6×10210.“山西八分鐘,驚艷全世界”.2019年2月25日下午,在外交部藍廳隆重舉行山西全球推介活動.山西經濟結構從“一煤獨大”向多元支撐轉變,三年累計退出煤炭過剩產能8800余萬噸,煤層氣產量突破56億立方米.數據56億用科學記數法可表示為()A.56×108 B.5.6×108 C.5.6×109 D.0.56×101011.如圖,平面直角坐標系中,矩形ABCD的邊AB:BC=3:2,點A(3,0),B(0,6)分別在x軸,y軸上,反比例函數y=的圖象經過點D,則k值為()A.﹣14 B.14 C.7 D.﹣712.下列圖形中,可以看作是中心對稱圖形的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖的三角形紙片中,,沿過點的直線折疊這個三角形,使點落在邊上的點處,折痕為,則的周長為__________.14.一等腰三角形,底邊長是18厘米,底邊上的高是18厘米,現在沿底邊依次從下往上畫寬度均為3厘米的矩形,畫出的矩形是正方形時停止,則這個矩形是第_____個.15.如圖,正方形ABCD中,E為AB的中點,AF⊥DE于點O,那么等于()A.; B.; C.; D..16.一個扇形的圓心角為120°,弧長為2π米,則此扇形的半徑是_____米.17.同時拋擲兩枚質地均勻的骰子,則事件“兩枚骰子的點數和小于8且為偶數”的概率是.18.等腰三角形一邊長為8,另一邊長為5,則此三角形的周長為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在中,,點在上運動,點在上,始終保持與相等,的垂直平分線交于點,交于,判斷與的位置關系,并說明理由;若,,,求線段的長.20.(6分)如圖,AB是半圓O的直徑,點P是半圓上不與點A,B重合的動點,PC∥AB,點M是OP中點.(1)求證:四邊形OBCP是平行四邊形;(2)填空:①當∠BOP=時,四邊形AOCP是菱形;②連接BP,當∠ABP=時,PC是⊙O的切線.21.(6分)如圖,在平面直角坐標系中,A為y軸正半軸上一點,過點A作x軸的平行線,交函數的圖象于B點,交函數的圖象于C,過C作y軸和平行線交BO的延長線于D.(1)如果點A的坐標為(0,2),求線段AB與線段CA的長度之比;(2)如果點A的坐標為(0,a),求線段AB與線段CA的長度之比;(3)在(1)條件下,四邊形AODC的面積為多少?22.(8分)如圖,一次函數y=kx+b的圖象與反比例函數y=mx(1)求一次函數,反比例函數的表達式;(2)求證:點C為線段AP的中點;(3)反比例函數圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,說明理由并求出點D的坐標;如果不存在,說明理由.23.(8分)閱讀下列材料:數學課上老師布置一道作圖題:已知:直線l和l外一點P.求作:過點P的直線m,使得m∥l.小東的作法如下:作法:如圖2,(1)在直線l上任取點A,連接PA;(2)以點A為圓心,適當長為半徑作弧,分別交線段PA于點B,直線l于點C;(3)以點P為圓心,AB長為半徑作弧DQ,交線段PA于點D;(4)以點D為圓心,BC長為半徑作弧,交弧DQ于點E,作直線PE.所以直線PE就是所求作的直線m.老師說:“小東的作法是正確的.”請回答:小東的作圖依據是________.24.(10分)如圖,拋物線交X軸于A、B兩點,交Y軸于點C,.(1)求拋物線的解析式;(2)平面內是否存在一點P,使以A,B,C,P為頂點的四邊形為平行四邊形,若存在直接寫出P的坐標,若不存在請說明理由。25.(10分)如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A作BC的平行線交CE的延長線與F,且AF=BD,連接BF。求證:D是BC的中點;如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論。26.(12分)“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了下面兩幅尚不完整的統計圖,請根據統計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統計圖中“基本了解”部分所對應扇形的圓心角為度;(2)請補全條形統計圖;(3)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數.27.(12分)如圖,在正方形ABCD中,E為對角線AC上一點,CE=CD,連接EB、ED,延長BE交AD于點F.求證:DF2=EF?BF.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】

延長BC′交AB′于D,根據等邊三角形的性質可得BD⊥AB′,利用勾股定理列式求出AB,然后根據等邊三角形的性質和等腰直角三角形的性質求出BD、C′D,然后根據BC′=BD-C′D計算即可得解.【題目詳解】解:延長BC′交AB′于D,連接BB',如圖,在Rt△AC′B′中,AB′=AC′=2,∵BC′垂直平分AB′,∴C′D=AB=1,∵BD為等邊三角形△ABB′的高,∴BD=AB′=,∴BC′=BD-C′D=-1.故本題選擇C.【題目點撥】熟練掌握勾股定理以及由旋轉60°得到△ABB′是等邊三角形是解本題的關鍵.2、C【解題分析】【分析】根據相關的定義(調查方式,概率,可能事件,必然事件)進行分析即可.【題目詳解】A.檢測一批燈泡的使用壽命不適宜用普查,因為有破壞性;B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就可能有5次正面朝上,因為這是隨機事件;C.“367人中有兩人是同月同日生”為必然事件.因為一年只有365天或366天,所以367人中至少有兩個日子相同;D.“多邊形內角和與外角和相等”是可能事件.如四邊形內角和和外角和相等.故正確選項為:C【題目點撥】本題考核知識點:對(調查方式,概率,可能事件,必然事件)理解.解題關鍵:理解相關概念,合理運用舉反例法.3、A【解題分析】

如圖,運用矩形的性質首先證明CN=3,∠C=90°;運用翻折變換的性質證明BM=MN(設為λ),運用勾股定理列出關于λ的方程,求出λ,即可解決問題.【題目詳解】如圖,由題意得:BM=MN(設為λ),CN=DN=3;∵四邊形ABCD為矩形,∴BC=AD=9,∠C=90°,MC=9-λ;由勾股定理得:λ2=(9-λ)2+32,解得:λ=5,∴五邊形ABMND的周長=6+5+5+3+9=28,故選A.【題目點撥】該題主要考查了翻折變換的性質、矩形的性質、勾股定理等幾何知識點及其應用問題;解題的關鍵是靈活運用翻折變換的性質、矩形的性質、勾股定理等幾何知識點來分析、判斷、推理或解答.4、D【解題分析】

根據二次函數的圖象與性質即可求出答案.【題目詳解】解:①由拋物線的對稱軸可知:,∴,由拋物線與軸的交點可知:,∴,∴,故①正確;②拋物線與軸只有一個交點,∴,∴,故②正確;③令,∴,∵,∴,∴,∴,∵,∴,故③正確;④由圖象可知:令,即的解為,∴的根為,故④正確;⑤∵,∴,故⑤正確;故選D.【題目點撥】考查二次函數的圖象與性質,解題的關鍵是熟練運用數形結合的思想.5、B【解題分析】試題解析:從小到大排列此數據為:1,2,2,2,3;數據2出現了三次最多為眾數,2處在第3位為中位數.平均數為(3+2+1+2+2)÷5=2,方差為[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位數是2,眾數是2,方差為0.1.故選B.6、B【解題分析】

根據題意畫出圖形,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,由三角形重心的性質得AD=3x,利用銳角三角函數表示出BD的長,由垂徑定理表示出BC的長,然后根據面積法解答即可.【題目詳解】如圖,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內接正三邊形的邊心距為1,故選B.【題目點撥】本題考查正多邊形和圓,三角形重心的性質,垂徑定理,銳角三角函數,面積法求線段的長,解答本題的關鍵是明確題意,求出相應的圖形的邊心距.7、B【解題分析】

根據題意表示出襯衫的價格,利用進價的變化得出等式即可.【題目詳解】解:設第一批購進x件襯衫,則所列方程為:+10=.故選B.【題目點撥】此題主要考查了由實際問題抽象出分式方程,正確找出等量關系是解題關鍵.8、C【解題分析】試題分析:根據反比例函數的性質,再結合函數的圖象即可解答本題.解:根據反比例函數的性質和圖象顯示可知:此函數為減函數,x≥-1時,在第三象限內y的取值范圍是y≤-1;在第一象限內y的取值范圍是y>1.故選C.考點:本題考查了反比例函數的性質點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要注意分析反比例函數的基本性質和知識,反比例函數y=的圖象是雙曲線,當k>1時,圖象在一、三象限,在每個象限內y隨x的增大而減??;當k<1時,圖象在二、四象限,在每個象限內,y隨x的增大而增大9、B【解題分析】試題分析:“960萬”用科學記數法表示為9.6×106,故選B.考點:科學記數法—表示較大的數.10、C【解題分析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值是易錯點,由于56億有10位,所以可以確定n=10﹣1=1.【題目詳解】56億=56×108=5.6×101,故選C.【題目點撥】此題考查科學記數法表示較大的數的方法,準確確定a與n值是關鍵.11、B【解題分析】過點D作DF⊥x軸于點F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點D的坐標為:(7,2),∴k,故選B.12、A【解題分析】分析:根據中心對稱的定義,結合所給圖形即可作出判斷.詳解:A、是中心對稱圖形,故本選項正確;B、不是中心對稱圖形,故本選項錯誤;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤;故選:A.點睛:本題考查了中心對稱圖形的特點,屬于基礎題,判斷中心對稱圖形的關鍵是旋轉180°后能夠重合.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】

由折疊的性質,可知:BE=BC,DE=DC,通過等量代換,即可得到答案.【題目詳解】∵沿過點的直線折疊這個三角形,使點落在邊上的點處,折痕為,∴BE=BC,DE=DC,∴的周長=AD+DE+AE=AD+DC+AE=AC+AE=AB+BC+AC-BC-BE=8+6+5-6-6=7cm,故答案是:【題目點撥】本題主要考查折疊的性質,根據三角形的周長定義,進行等量代換是解題的關鍵.14、5【解題分析】

根據相似三角形的相似比求得頂點到這個正方形的長,再根據矩形的寬求得是第幾張.【題目詳解】解:已知剪得的紙條中有一張是正方形,則正方形中平行于底邊的邊是3,所以根據相似三角形的性質可設從頂點到這個正方形的線段為x,則318=x所以另一段長為18-3=15,因為15÷3=5,所以是第5張.故答案為:5.【題目點撥】本題主要考查了相相似三角形的判定和性質,關鍵是根據似三角形的性質及等腰三角形的性質的綜合運用解答.15、D【解題分析】

利用△DAO與△DEA相似,對應邊成比例即可求解.【題目詳解】∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA∴△DAO∽△DEA∴即∵AE=AD∴故選D.16、1【解題分析】

根據弧長公式l=nπr180,可得r=【題目詳解】解:∵l=nπr∴r=180lnπ=故答案為:1.【題目點撥】考查了弧長的計算,解答本題的關鍵是掌握弧長公式:l=nπr180(弧長為l,圓心角度數為n,圓的半徑為17、.【解題分析】試題分析:畫樹狀圖為:共有36種等可能的結果數,其中“兩枚骰子的點數和小于8且為偶數”的結果數為9,所以“兩枚骰子的點數和小于8且為偶數”的概率==.故答案為.考點:列表法與樹狀圖法.18、18或21【解題分析】當腰為8時,周長為8+8+5=21;當腰為5時,周長為5+5+8=18.故此三角形的周長為18或21.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1).理由見解析;(2).【解題分析】

(1)根據得到∠A=∠PDA,根據線段垂直平分線的性質得到,利用,得到,于是得到結論;

(2)連接PE,設DE=x,則EB=ED=x,CE=8-x,根據勾股定理即可得到結論.【題目詳解】(1).理由如下,∵,∴,∵,∴,∵垂直平分,∴,∴,∴,∴,即.(2)連接,設,由(1)得,,又,,∵,∴,∴,解得,即.【題目點撥】本題考查了線段垂直平分線的性質,直角三角形的性質,勾股定理,正確的作出輔助線解題的關鍵.20、(1)見解析;(2)①120°;②45°【解題分析】

(1)由AAS證明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出結論;

(2)①證出OA=OP=PA,得出△AOP是等邊三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;

②由切線的性質和平行線的性質得出∠BOP=90°,由等腰三角形的性質得出∠ABP=∠OPB=45°即可.【題目詳解】(1)∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵點M是OP的中點,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圓O的直徑,∴OA=OB,∴PC=OB.又PC∥AB,∴四邊形OBCP是平行四邊形.(2)①∵四邊形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等邊三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案為120°;②∵PC是⊙O的切線,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案為45°.【題目點撥】本題是圓的綜合題目,考查了全等三角形的判定與性質、平行四邊形的判定、切線的性質、菱形的判定與性質、等邊三角形的判定與性質等知識;本題綜合性強,熟練掌握切線的性質和平行四邊形的判定是解題的關鍵.21、(1)線段AB與線段CA的長度之比為;(2)線段AB與線段CA的長度之比為;(3)1.【解題分析】試題分析:(1)由題意把y=2代入兩個反比例函數的解析式即可求得點B、C的橫坐標,從而得到AB、AC的長,即可得到線段AB與AC的比值;(2)由題意把y=a代入兩個反比例函數的解析式即可求得用“a”表示的點B、C的橫坐標,從而可得到AB、AC的長,即可得到線段AB與AC的比值;(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行線分線段成比例定理即可求得CD的長,從而可由梯形的面積公式求出四邊形AODC的面積.試題解析:(1)∵A(0,2),BC∥x軸,∴B(﹣1,2),C(3,2),∴AB=1,CA=3,∴線段AB與線段CA的長度之比為;(2)∵B是函數y=﹣(x<0)的一點,C是函數y=(x>0)的一點,∴B(﹣,a),C(,a),∴AB=,CA=,∴線段AB與線段CA的長度之比為;(3)∵=,∴=,又∵OA=a,CD∥y軸,∴,∴CD=4a,∴四邊形AODC的面積為=(a+4a)×=1.22、(1)y=24x+1.(2)點C為線段AP的中點.(3)存在點D,使四邊形BCPD為菱形,點D【解題分析】試題分析:(1)由點A與點B關于y軸對稱,可得AO=BO,再由A的坐標求得B點的坐標,從而求得點P的坐標,將P坐標代入反比例解析式求出m的值,即可確定出反比例解析式,將A與P坐標代入一次函數解析式求出k與b的值,確定出一次函數解析式;(2)由AO=BO,PB∥CO,即可證得結論;(3)假設存在這樣的D點,使四邊形BCPD為菱形,過點C作CD平行于x軸,交PB于點E,交反比例函數y=-8試題解析:(1)∵點A與點B關于y軸對稱,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=mx得m∴反比例函數的解析式:y=8x把A(-4,0),P(4,2)代入y=kx+b得:{0=-4k+b2=4k+b,解得:所以一次函數的解析式:y=24x(2)∵點A與點B關于y軸對稱,∴OA=OB∵PB丄x軸于點B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴點C為線段AP的中點.(3)存在點D,使四邊形BCPD為菱形∵點C為線段AP的中點,∴BC=12∴BC和PC是菱形的兩條邊由y=14x+1,可得點C過點C作CD平行于x軸,交PB于點E,交反比例函數y=-8x的圖象于點分別連結PD、BD,∴點D(8,1),BP⊥CD∴PE=BE=1,∴CE=DE=4,∴PB與CD互相垂直平分,∴四邊形BCPD為菱形.∴點D(8,1)即為所求.23、內錯角相等,兩直線平行【解題分析】

根據內錯角相等,兩直線平行即可判斷.【題目詳解】∵∠EPA=∠CAP,∴m∥l(內錯角相等,兩直線平行).故答案為:內錯角相等,兩直線平行.【題目點撥】本題考查了作圖﹣復雜作圖,平行線的判定等知識,解題的關鍵是熟練掌握五種基本作圖,屬于中考常考題型.24、(1);(2)(3,-4)或(5,4)或(-5,4)【解題分析】

(1)設|OA|=1,確定A,B,C三點坐標,然后用待定系數法即可完成;(2)先畫出存在的點,然后通過平移和計算確定坐標;【題目詳解】解:(1)設|OA|=1,則A(-1,0),B(4,0)C(0,4)設拋物線的解析式為y=ax2+bx+c則有:解得所以函數解析式為:(2)存在,(3,-4)或(5,4)或(-5,4)理由如下:如圖:P1相當于C點向右平移了5個單位長度,則坐標為(5,4);P2相當于C點向左平移了5個單位長度,則坐標為(-5,4);設P3坐標為(m,n)在第四象限,要使AP3BC是平行四邊形,則有AP3=BC,BP3=AC∴即(舍去)P3坐標為(3,-4)【題目點撥】本題主要考查了二次函數綜合題,此題涉及到待定系數法求二次函數解析式,通過作圖確認平行四邊形存在,然后通過觀察和計算確定P點坐標;解題的關鍵在于規(guī)范作圖,以便于樹形結合.25、(1)詳見解析;(2)詳見解析【解題分析】

(1)根據兩直線平行,內錯角相等求出∠AFE=∠DCE,然后利用“角角邊”證明△AEF和△DEC全等,再根據全等三角形的性質和等量關系即可求解;(2)由(1)知AF平行等于BD,易證四邊形AFBD是平行四邊形,而AB=AC,AD是中線,利用等腰三角形三線合一定理,可證AD⊥BC,即∠ADB=90°,那么可證四邊形AFBD是矩形.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論