版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河北省石家莊市達標名校2024年中考數(shù)學考試模擬沖刺卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,⊙O中,弦BC與半徑OA相交于點D,連接AB,OC,若∠A=60°,∠ADC=85°,則∠C的度數(shù)是()A.25° B.27.5° C.30° D.35°2.“a是實數(shù),|a|≥0”這一事件是()A.必然事件 B.不確定事件 C.不可能事件 D.隨機事件3.下列命題正確的是()A.對角線相等的四邊形是平行四邊形B.對角線相等的四邊形是矩形C.對角線互相垂直的平行四邊形是菱形D.對角線互相垂直且相等的四邊形是正方形4.1﹣的相反數(shù)是()A.1﹣ B.﹣1 C. D.﹣15.如圖,在四邊形ABCD中,∠A+∠D=α,∠ABC的平分線與∠BCD的平分線交于點P,則∠P=()A.90°-α B.90°+α C. D.360°-α6.如圖,在⊙O中,弦AC∥半徑OB,∠BOC=50°,則∠OAB的度數(shù)為()A.25° B.50° C.60° D.30°7.已知點A(0,﹣4),B(8,0)和C(a,﹣a),若過點C的圓的圓心是線段AB的中點,則這個圓的半徑的最小值是()A. B. C. D.28.如圖,五邊形ABCDE中,AB∥CD,∠1、∠2、∠3分別是∠BAE、∠AED、∠EDC的外角,則∠1+∠2+∠3等于A.90° B.180° C.210° D.270°9.如圖,E為平行四邊形ABCD的邊AB延長線上的一點,且BE:AB=2:3,△BEF的面積為4,則平行四邊形ABCD的面積為()
A.30 B.27 C.14 D.3210.小軍旅行箱的密碼是一個六位數(shù),由于他忘記了密碼的末位數(shù)字,則小軍能一次打開該旅行箱的概率是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.估計無理數(shù)在連續(xù)整數(shù)___與____之間.12.如圖,C為半圓內(nèi)一點,O為圓心,直徑AB長為1cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時針旋轉(zhuǎn)至△B′OC′,點C′在OA上,則邊BC掃過區(qū)域(圖中陰影部分)的面積為_________cm1.13.七巧板是我們祖先的一項創(chuàng)造,被譽為“東方魔板”,如圖所示是一副七巧板,若已知S△BIC=1,據(jù)七巧板制作過程的認識,求出平行四邊形EFGH_____.14.分解因式:3ax2﹣3ay2=_____.15.2018年3月2日,大型記錄電影《厲害了,我的國》登陸全國各大院線.某影院針對這一影片推出了特惠活動:票價每人30元,團體購票超過10人,票價可享受八折優(yōu)惠,學校計劃組織全體教師觀看此影片.若觀影人數(shù)為a(a>10),則應付票價總額為_____元.(用含a的式子表示)16.按照神舟號飛船環(huán)境控制與生命保障分系統(tǒng)的設(shè)計指標,“神舟”五號飛船返回艙的溫度為21℃±4℃.該返回艙的最高溫度為________℃.三、解答題(共8題,共72分)17.(8分)如圖,Rt△ABC中,∠ABC=90°,點D,F(xiàn)分別是AC,AB的中點,CE∥DB,BE∥DC.(1)求證:四邊形DBEC是菱形;(2)若AD=3,DF=1,求四邊形DBEC面積.18.(8分)如圖,在正方形ABCD的外側(cè),作兩個等邊三角形ABE和ADF,連結(jié)ED與FC交于點M,則圖中≌,可知,求得______.如圖,在矩形的外側(cè),作兩個等邊三角形ABE和ADF,連結(jié)ED與FC交于點M.求證:.若,求的度數(shù).19.(8分)如圖1,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE,求證:CE=CF;如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結(jié)論證明:GE=BE+GD;運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.20.(8分)解不等式組,并將解集在數(shù)軸上表示出來.21.(8分)如圖,拋物線y=ax2+bx+c與x軸相交于點A(﹣3,0),B(1,0),與y軸相交于(0,﹣),頂點為P.(1)求拋物線解析式;(2)在拋物線是否存在點E,使△ABP的面積等于△ABE的面積?若存在,求出符合條件的點E的坐標;若不存在,請說明理由;(3)坐標平面內(nèi)是否存在點F,使得以A、B、P、F為頂點的四邊形為平行四邊形?直接寫出所有符合條件的點F的坐標,并求出平行四邊形的面積.22.(10分)如圖,已知∠AOB與點M、N求作一點P,使點P到邊OA、OB的距離相等,且PM=PN(保留作圖痕跡,不寫作法)23.(12分)某工廠準備用圖甲所示的A型正方形板材和B型長方形板材,制作成圖乙所示的豎式和橫式兩種無蓋箱子.若該工廠準備用不超過10000元的資金去購買A,B兩種型號板材,并全部制作豎式箱子,已知A型板材每張30元,B型板材每張90元,求最多可以制作豎式箱子多少只?若該工廠倉庫里現(xiàn)有A型板材65張、B型板材110張,用這批板材制作兩種類型的箱子,問制作豎式和橫式兩種箱子各多少只,恰好將庫存的板材用完?若該工廠新購得65張規(guī)格為的C型正方形板材,將其全部切割成A型或B型板材不計損耗,用切割成的板材制作兩種類型的箱子,要求豎式箱子不少于20只,且材料恰好用完,則能制作兩種箱子共______只24.如圖,直線y=﹣x+3分別與x軸、y交于點B、C;拋物線y=x2+bx+c經(jīng)過點B、C,與x軸的另一個交點為點A(點A在點B的左側(cè)),對稱軸為l1,頂點為D.(1)求拋物線y=x2+bx+c的解析式.(2)點M(1,m)為y軸上一動點,過點M作直線l2平行于x軸,與拋物線交于點P(x1,y1),Q(x2,y2),與直線BC交于點N(x3,y3),且x2>x1>1.①結(jié)合函數(shù)的圖象,求x3的取值范圍;②若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,求m的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】分析:直接利用三角形外角的性質(zhì)以及鄰補角的關(guān)系得出∠B以及∠ODC度數(shù),再利用圓周角定理以及三角形內(nèi)角和定理得出答案.詳解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故選D.點睛:此題主要考查了圓周角定理以及三角形內(nèi)角和定理等知識,正確得出∠AOC度數(shù)是解題關(guān)鍵.2、A【解題分析】根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,由a是實數(shù),得|a|≥0恒成立,因此,這一事件是必然事件.故選A.3、C【解題分析】分析:根據(jù)平行四邊形、矩形、菱形、正方形的判定定理判斷即可.詳解:對角線互相平分的四邊形是平行四邊形,A錯誤;對角線相等的平行四邊形是矩形,B錯誤;對角線互相垂直的平行四邊形是菱形,C正確;對角線互相垂直且相等的平行四邊形是正方形;故選:C.點睛:本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的性質(zhì)定理.4、B【解題分析】
根據(jù)相反數(shù)的的定義解答即可.【題目詳解】根據(jù)a的相反數(shù)為-a即可得,1﹣的相反數(shù)是﹣1.故選B.【題目點撥】本題考查了相反數(shù)的定義,熟知相反數(shù)的定義是解決問題的關(guān)鍵.5、C【解題分析】試題分析:∵四邊形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分別為∠ABC、∠BCD的平分線,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,則∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故選C.考點:1.多邊形內(nèi)角與外角2.三角形內(nèi)角和定理.6、A【解題分析】如圖,∵∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠OBA=∠BAC=25°,∵OA=OB,∴∠OAB=∠OBA=25°.故選A.7、B【解題分析】
首先求得AB的中點D的坐標,然后求得經(jīng)過點D且垂直于直線y=-x的直線的解析式,然后求得與y=-x的交點坐標,再求得交點與D之間的距離即可.【題目詳解】AB的中點D的坐標是(4,-2),∵C(a,-a)在一次函數(shù)y=-x上,∴設(shè)過D且與直線y=-x垂直的直線的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,則函數(shù)解析式是y=x-1.根據(jù)題意得:,解得:,則交點的坐標是(3,-3).則這個圓的半徑的最小值是:=.
故選:B【題目點撥】本題考查了待定系數(shù)法求函數(shù)的解析式,以及兩直線垂直的條件,正確理解C(a,-a),一定在直線y=-x上,是關(guān)鍵.8、B【解題分析】
試題分析:如圖,如圖,過點E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故選B9、A【解題分析】∵四邊形ABCD是平行四邊形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四邊形ABFD=S△AED-S△BEF=25-4=21,∴S平行四邊形ABCD=S△CDF+S四邊形ABFD=9+21=30,故選A.【題目點撥】本題考查了平行四邊形的性質(zhì),相似三角形的判定與性質(zhì)等,熟記相似三角形的面積等于相似比的平方是解題的關(guān)鍵.10、A【解題分析】∵密碼的末位數(shù)字共有10種可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴當他忘記了末位數(shù)字時,要一次能打開的概率是.故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、34【解題分析】
先找到與11相鄰的平方數(shù)9和16,求出算術(shù)平方根即可解題.【題目詳解】解:∵,∴,∴無理數(shù)在連續(xù)整數(shù)3與4之間.【題目點撥】本題考查了無理數(shù)的估值,屬于簡單題,熟記平方數(shù)是解題關(guān)鍵.12、【解題分析】
根據(jù)直角三角形的性質(zhì)求出OC、BC,根據(jù)扇形面積公式計算即可.【題目詳解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=OB=1則邊BC掃過區(qū)域的面積為:故答案為.【題目點撥】考核知識點:扇形面積計算.熟記公式是關(guān)鍵.13、1【解題分析】
根據(jù)七巧板的性質(zhì)可得BI=IC=CH=HE,因為S△BIC=1,∠BIC=90°,可求得BI=IC=,BC=1,在求得點G到EF的距離為sin45°,根據(jù)平行四邊形的面積即可求解.【題目詳解】由七巧板性質(zhì)可知,BI=IC=CH=HE.又∵S△BIC=1,∠BIC=90°,∴BI?IC=1,∴BI=IC=,∴BC==1,∵EF=BC=1,F(xiàn)G=EH=BI=,∴點G到EF的距離為:,∴平行四邊形EFGH的面積=EF?=1×=1.故答案為1【題目點撥】本題考查了七巧板的性質(zhì)、等腰直角三角形的性質(zhì)及平行四邊形的面積公式,熟知七巧板的性質(zhì)是解決問題的關(guān)鍵.14、3a(x+y)(x-y)【解題分析】
解:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).【題目點撥】本題考查提公因式法與公式法的綜合運用.15、24a【解題分析】
根據(jù)題意列出代數(shù)式即可.【題目詳解】根據(jù)題意得:30a×0.8=24a,
則應付票價總額為24a元,
故答案為24a.【題目點撥】考查了列代數(shù)式,弄清題意是解本題的關(guān)鍵.16、17℃.【解題分析】
根據(jù)返回艙的溫度為21℃±4℃,可知最高溫度為21℃+4℃;最低溫度為21℃-4℃.【題目詳解】解:返回艙的最高溫度為:21+4=25℃;返回艙的最低溫度為:21-4=17℃;故答案為:17℃.【題目點撥】本題考查正數(shù)和負數(shù)的意義.±4℃指的是比21℃高于4℃或低于4℃.三、解答題(共8題,共72分)17、(1)見解析;(1)4【解題分析】
(1)根據(jù)平行四邊形的判定定理首先推知四邊形DBEC為平行四邊形,然后由直角三角形斜邊上的中線等于斜邊的一半得到其鄰邊相等:CD=BD,得證;(1)由三角形中位線定理和勾股定理求得AB邊的長度,然后根據(jù)菱形的性質(zhì)和三角形的面積公式進行解答.【題目詳解】(1)證明:∵CE∥DB,BE∥DC,∴四邊形DBEC為平行四邊形.又∵Rt△ABC中,∠ABC=90°,點D是AC的中點,∴CD=BD=AC,∴平行四邊形DBEC是菱形;(1)∵點D,F(xiàn)分別是AC,AB的中點,AD=3,DF=1,∴DF是△ABC的中位線,AC=1AD=6,S△BCD=S△ABC∴BC=1DF=1.又∵∠ABC=90°,∴AB===4.∵平行四邊形DBEC是菱形,∴S四邊形DBEC=1S△BCD=S△ABC=AB?BC=×4×1=4.點睛:本題考查了菱形的判定與性質(zhì),直角三角形斜邊上的中線等于斜邊的一半,三角形中位線定理.由點D是AC的中點,得到CD=BD是解答(1)的關(guān)鍵,由菱形的性質(zhì)和三角形的面積公式得到S四邊形DBEC=S△ABC是解(1)的關(guān)鍵.18、閱讀發(fā)現(xiàn):90°;(1)證明見解析;(2)100°【解題分析】
閱讀發(fā)現(xiàn):只要證明,即可證明.拓展應用:欲證明,只要證明≌即可.根據(jù)即可計算.【題目詳解】解:如圖中,四邊形ABCD是正方形,,,≌,,,,,,,故答案為為等邊三角形,,.為等邊三角形,,.四邊形ABCD為矩形,,..,,.在和中,,≌.;≌,,.【題目點撥】本題考查全等三角形的判定和性質(zhì)、正方形的性質(zhì)、矩形的性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形,利用全等三角形的尋找解決問題,屬于中考??碱}型.19、(1)、(2)證明見解析(3)28【解題分析】試題分析:(1)根據(jù)正方形的性質(zhì),可直接證明△CBE≌△CDF,從而得出CE=CF;(2)延長AD至F,使DF=BE,連接CF,根據(jù)(1)知∠BCE=∠DCF,即可證明∠ECF=∠BCD=90°,根據(jù)∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)過C作CF⊥AD的延長線于點F.則四邊形ABCF是正方形,設(shè)DF=x,則AD=12-x,根據(jù)(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;試題解析:(1)如圖1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如圖2,延長AD至F,使DF=BE,連接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)過C作CF⊥AD的延長線于點F.則四邊形ABCF是正方形.AE=AB-BE=12-4=8,設(shè)DF=x,則AD=12-x,根據(jù)(2)可得:DE=BE+DF=4+x,在直角△ADE中,AE2+AD2=DE2,則82+(12-x)2=(4+x)2,解得:x=1.則DE=4+1=2.【題目點撥】本題考查了全等三角形的判定和性質(zhì)以及正方形的性質(zhì),解決本題的關(guān)鍵是注意每個題目之間的關(guān)系,正確作出輔助線.20、原不等式組的解集為﹣4<x≤1,在數(shù)軸上表示見解析.【解題分析】分析:根據(jù)解一元一次不等式組的步驟,大小小大中間找,可得答案詳解:解不等式①,得x>﹣4,解不等式②,得x≤1,把不等式①②的解集在數(shù)軸上表示如圖,原不等式組的解集為﹣4<x≤1.點睛:本題考查了解一元一次不等式組,利用不等式組的解集的表示方法是解題關(guān)鍵.21、(1)y=x2+x﹣(2)存在,(﹣1﹣2,2)或(﹣1+2,2)(3)點F的坐標為(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四邊形的面積為1【解題分析】
(1)設(shè)拋物線解析式為y=ax2+bx+c,把(﹣3,0),(1,0),(0,)代入求出a、b、c的值即可;(2)根據(jù)拋物線解析式可知頂點P的坐標,由兩個三角形的底相同可得要使兩個三角形面積相等則高相等,根據(jù)P點坐標可知E點縱坐標,代入解析式求出x的值即可;(3)分別討論AB為邊、AB為對角線兩種情況求出F點坐標并求出面積即可;【題目詳解】(1)設(shè)拋物線解析式為y=ax2+bx+c,將(﹣3,0),(1,0),(0,)代入拋物線解析式得,解得:a=,b=1,c=﹣∴拋物線解析式:y=x2+x﹣(2)存在.∵y=x2+x﹣=(x+1)2﹣2∴P點坐標為(﹣1,﹣2)∵△ABP的面積等于△ABE的面積,∴點E到AB的距離等于2,設(shè)E(a,2),∴a2+a﹣=2解得a1=﹣1﹣2,a2=﹣1+2∴符合條件的點E的坐標為(﹣1﹣2,2)或(﹣1+2,2)(3)∵點A(﹣3,0),點B(1,0),∴AB=4若AB為邊,且以A、B、P、F為頂點的四邊形為平行四邊形∴AB∥PF,AB=PF=4∵點P坐標(﹣1,﹣2)∴點F坐標為(3,﹣2),(﹣5,﹣2)∴平行四邊形的面積=4×2=1若AB為對角線,以A、B、P、F為頂點的四邊形為平行四邊形∴AB與PF互相平分設(shè)點F(x,y)且點A(﹣3,0),點B(1,0),點P(﹣1,﹣2)∴,∴x=﹣1,y=2∴點F(﹣1,2)∴平行四邊形的面積=×4×4=1綜上所述:點F的坐標為(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四邊形的面積為1.【題目點撥】本題考查待定系數(shù)法求二次函數(shù)解析式及二次函數(shù)的幾何應用,分類討論并熟練掌握數(shù)形結(jié)合的數(shù)學思想方法是解題關(guān)鍵.22、見解析【解題分析】
作∠AOB的角平分線和線段MN的垂直平分線,它們的交點即是要求作的點P.【題目詳解】解:①作∠AOB的平分線OE,②作線段MN的垂直平分線GH,GH交OE于點P.點P即為所求.【題目點撥】本題考查了角平分線和線段垂直平分線的尺規(guī)作法,熟練掌握角平分線和線段垂直平分線的的作圖步驟是解答本題的關(guān)鍵.23、(1)最多可以做25只豎式箱子;(2)能制作豎式、橫式兩種無蓋箱子分別為5只和30只;(3)47或1.【解題分析】
表示出豎式箱子所用板材數(shù)量進而得出總金額即可得出答案;設(shè)制作豎式箱子a只,橫式箱子b只,利用A型板材65張、B型板材110張,得出方程組求出答案;設(shè)裁剪出B型板材m張,則可裁A型板材張,進而得出方程組求出符合題意的答案.【題目詳解】解:設(shè)最多可制作豎式箱子x只,則A型板材x張,B型板材4x張,根據(jù)題意得解得.答:最多可以做25只豎式箱子.設(shè)制作豎式箱子a只,橫式箱子b只,根據(jù)題意,得,解得:.答:能制作豎式、橫式兩種無蓋箱子分別為5只和30只.設(shè)裁剪出B型板材m張,則可裁A型板材張,由題意得:,整理得,,.豎式箱子不少于20只,或22,這時,或,.則能制作兩種箱子共:或.故答案為47或1.【題目點撥】本題考查了一元一次不等式的應用以及二元一次方程組的應用,解題的關(guān)鍵是理解題意,列出等式.24、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值為或2.【解題分析】
(2)由直線y=﹣x+3分別與x軸、y交于點B、C求得點B、C的坐標,再代入y=x2+bx+c求得b、c的值,即可求得拋物線的解析式;(2)①先求得拋物線的頂點坐標為D(2,﹣2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 多中心性網(wǎng)狀組織細胞增生癥的臨床護理
- 急性心力衰竭的護理
- 《第一章》課件-第七章第一節(jié):大數(shù)據(jù)技術(shù)與應用-應用場景
- 《第一章》課件-第七章第二節(jié):大數(shù)據(jù)技術(shù)與應用-技術(shù)體驗-天貓大數(shù)據(jù)之數(shù)據(jù)清洗
- 妊娠合并甲狀腺功能亢進的臨床護理
- 癤癰的臨床護理
- 孕期臉色發(fā)黃的健康宣教
- 腺樣體切除術(shù)的健康宣教
- JJF(陜) 017-2019 數(shù)字溫濕度計校準規(guī)范
- 模擬電子電路基礎(chǔ)課件大全課件
- 安徽省合肥市包河區(qū)2023-2024學年三年級上學期語文期末試卷
- 【MOOC】新媒體文化十二講-暨南大學 中國大學慕課MOOC答案
- 2024-2025學年二年級數(shù)學上冊期末樂考非紙筆測試題(二 )(蘇教版)
- 2024年度智能制造生產(chǎn)線改造項目合同
- 2024年度食堂檔口承包合同(含菜品研發(fā))3篇
- DB32T 4578.2-2023 丙型病毒性肝炎防治技術(shù)指南 第2部分:患者管理
- 護理輪科心得
- 英語期末復習講座模板
- 9《作息有規(guī)律》(說課稿)2024-2025學年統(tǒng)編版(2024)道德與法治一年級上冊
- 2024年學校食堂工作計劃(五篇)
- 北京市西城區(qū)2023-2024學年六年級上學期語文期末試卷
評論
0/150
提交評論