重慶市南岸區(qū)重點名校2024屆中考數學考試模擬沖刺卷含解析_第1頁
重慶市南岸區(qū)重點名校2024屆中考數學考試模擬沖刺卷含解析_第2頁
重慶市南岸區(qū)重點名校2024屆中考數學考試模擬沖刺卷含解析_第3頁
重慶市南岸區(qū)重點名校2024屆中考數學考試模擬沖刺卷含解析_第4頁
重慶市南岸區(qū)重點名校2024屆中考數學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市南岸區(qū)重點名校2024學年中考數學考試模擬沖刺卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.下列各式中,計算正確的是()A. B.C. D.2.某校120名學生某一周用于閱讀課外書籍的時間的頻率分布直方圖如圖所示.其中閱讀時間是8~10小時的頻數和頻率分別是()A.15,0.125 B.15,0.25 C.30,0.125 D.30,0.253.已知一元二次方程2x2+2x﹣1=0的兩個根為x1,x2,且x1<x2,下列結論正確的是()A.x1+x2=1 B.x1?x2=﹣1 C.|x1|<|x2| D.x12+x1=4.已知,如圖,AB//CD,∠DCF=100°,則∠AEF的度數為()A.120° B.110° C.100° D.80°5.已知一次函數y=kx+3和y=k1x+5,假設k<0且k1>0,則這兩個一次函數的圖像的交點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如圖,已知線段AB,分別以A,B為圓心,大于AB為半徑作弧,連接弧的交點得到直線l,在直線l上取一點C,使得∠CAB=25°,延長AC至點M,則∠BCM的度數為()A.40° B.50° C.60° D.70°7.魏晉時期的數學家劉徽首創(chuàng)割圓術.為計算圓周率建立了嚴密的理論和完善的算法.作圓內接正多邊形,當正多邊形的邊數不斷增加時,其周長就無限接近圓的周長,進而可用來求得較為精確的圓周率.祖沖之在劉徽的基礎上繼續(xù)努力,當正多邊形的邊數增加24576時,得到了精確到小數點后七位的圓周率,這一成就在當時是領先其他國家一千多年,如圖,依據“割圓術”,由圓內接正六邊形算得的圓周率的近似值是()A.0.5 B.1 C.3 D.π8.如圖,“趙爽弦圖”是由四個全等的直角三角形與中間一個小正方形拼成的一個大正方形,大正方形與小正方形的邊長之比是2∶1,若隨機在大正方形及其內部區(qū)域投針,則針孔扎到小正方形(陰影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.59.如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB.添加一個條件,不能使四邊形DBCE成為矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE10.如圖,直線a∥b,直線c與直線a、b分別交于點A、點B,AC⊥AB于點A,交直線b于點C.如果∠1=34°,那么∠2的度數為()A.34° B.56° C.66° D.146°二、填空題(本大題共6個小題,每小題3分,共18分)11.計算:2a×(﹣2b)=_____.12.在一個不透明的袋子里裝有一個黑球和兩個白球,它們除顏色外都相同,隨機從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,再隨機摸出一個球,兩次都摸到黑球的概率是__________.13.計算:=_____.14.如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P與點B,C都不重合),現(xiàn)將△PCD沿直線PD折疊,使點C落到點F處;過點P作∠BPF的角平分線交AB于點E.設BP=x,BE=y,則下列圖象中,能表示y與x的函數關系的圖象大致是()15.如圖,?ABCD中,AC⊥CD,以C為圓心,CA為半徑作圓弧交BC于E,交CD的延長線于點F,以AC上一點O為圓心OA為半徑的圓與BC相切于點M,交AD于點N.若AC=9cm,OA=3cm,則圖中陰影部分的面積為_____cm1.16.“五一”期間,一批九年級同學包租一輛面包車前去竹海游覽,面包車的租金為300元,出發(fā)時,又增加了4名同學,且租金不變,這樣每個同學比原來少分攤了20元車費.若設參加游覽的同學一共有x人,為求x,可列方程_____.三、解答題(共8題,共72分)17.(8分)今年3月12日植樹節(jié)期間,學校預購進A、B兩種樹苗,若購進A種樹苗3棵,B種樹苗5棵,需2100元,若購進A種樹苗4棵,B種樹苗10棵,需3800元.(1)求購進A、B兩種樹苗的單價;(2)若該單位準備用不多于8000元的錢購進這兩種樹苗共30棵,求A種樹苗至少需購進多少棵?18.(8分)如圖,已知△ABC內接于,AB是直徑,OD∥AC,AD=OC.(1)求證:四邊形OCAD是平行四邊形;(2)填空:①當∠B=時,四邊形OCAD是菱形;②當∠B=時,AD與相切.19.(8分)如圖,把△EFP按圖示方式放置在菱形ABCD中,使得頂點E、F、P分別在線段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大??;(2)若AP=6,求AE+AF的值.20.(8分)如圖,點A的坐標為(﹣4,0),點B的坐標為(0,﹣2),把點A繞點B順時針旋轉90°得到的點C恰好在拋物線y=ax2上,點P是拋物線y=ax2上的一個動點(不與點O重合),把點P向下平移2個單位得到動點Q,則:(1)直接寫出AB所在直線的解析式、點C的坐標、a的值;(2)連接OP、AQ,當OP+AQ獲得最小值時,求這個最小值及此時點P的坐標;(3)是否存在這樣的點P,使得∠QPO=∠OBC,若不存在,請說明理由;若存在,請你直接寫出此時P點的坐標.21.(8分)如圖1,三個正方形ABCD、AEMN、CEFG,其中頂點D、C、G在同一條直線上,點E是BC邊上的動點,連結AC、AM.(1)求證:△ACM∽△ABE.(2)如圖2,連結BD、DM、MF、BF,求證:四邊形BFMD是平行四邊形.(3)若正方形ABCD的面積為36,正方形CEFG的面積為4,求五邊形ABFMN的面積.22.(10分)某公司計劃購買A,B兩種型號的電腦,已知購買一臺A型電腦需0.6萬元,購買一臺B型電腦需0.4萬元,該公司準備投入資金y萬元,全部用于購進35臺這兩種型號的電腦,設購進A型電腦x臺.(1)求y關于x的函數解析式;(2)若購進B型電腦的數量不超過A型電腦數量的2倍,則該公司至少需要投入資金多少萬元?23.(12分)如圖,已知四邊形ABCD是平行四邊形,延長BA至點E,使AE=AB,連接DE,AC(1)求證:四邊形ACDE為平行四邊形;(2)連接CE交AD于點O,若AC=AB=3,cosB=,求線段CE的長.24.已知一個二次函數的圖象經過A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四點,求這個函數解析式以及點C的坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】

接利用合并同類項法則以及積的乘方運算法則、同底數冪的乘除運算法則分別計算得出答案.【題目詳解】A、無法計算,故此選項錯誤;B、a2?a3=a5,故此選項錯誤;C、a3÷a2=a,正確;D、(a2b)2=a4b2,故此選項錯誤.故選C.【題目點撥】此題主要考查了合并同類項以及積的乘方運算、同底數冪的乘除運算,正確掌握相關運算法則是解題關鍵.2、D【解題分析】分析:根據頻率分布直方圖中的數據信息和被調查學生總數為120進行計算即可作出判斷.詳解:由頻率分布直方圖可知:一周內用于閱讀的時間在8-10小時這組的:頻率:組距=0.125,而組距為2,∴一周內用于閱讀的時間在8-10小時這組的頻率=0.125×2=0.25,又∵被調查學生總數為120人,∴一周內用于閱讀的時間在8-10小時這組的頻數=120×0.25=30.綜上所述,選項D中數據正確.故選D.點睛:本題解題的關鍵有兩點:(1)要看清,縱軸上的數據是“頻率:組距”的值,而不是頻率;(2)要弄清各自的頻數、頻率和總數之間的關系.3、D【解題分析】【分析】直接利用根與系數的關系對A、B進行判斷;由于x1+x2<0,x1x2<0,則利用有理數的性質得到x1、x2異號,且負數的絕對值大,則可對C進行判斷;利用一元二次方程解的定義對D進行判斷.【題目詳解】根據題意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B選項錯誤;∵x1+x2<0,x1x2<0,∴x1、x2異號,且負數的絕對值大,故C選項錯誤;∵x1為一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D選項正確,故選D.【題目點撥】本題考查了一元二次方程的解、一元二次方程根與系數的關系,熟練掌握相關內容是解題的關鍵.4、D【解題分析】

先利用鄰補角得到∠DCE=80°,然后根據平行線的性質求解.【題目詳解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故選D.【題目點撥】本題考查了平行線性質:兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.5、B【解題分析】

依題意在同一坐標系內畫出圖像即可判斷.【題目詳解】根據題意可作兩函數圖像,由圖像知交點在第二象限,故選B.【題目點撥】此題主要考查一次函數的圖像,解題的關鍵是根據題意作出相應的圖像.6、B【解題分析】

解:∵由作法可知直線l是線段AB的垂直平分線,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故選B.7、C【解題分析】

連接OC、OD,根據正六邊形的性質得到∠COD=60°,得到△COD是等邊三角形,得到OC=CD,根據題意計算即可.【題目詳解】連接OC、OD,∵六邊形ABCDEF是正六邊形,∴∠COD=60°,又OC=OD,∴△COD是等邊三角形,∴OC=CD,正六邊形的周長:圓的直徑=6CD:2CD=3,故選:C.【題目點撥】本題考查的是正多邊形和圓,掌握正多邊形的中心角的計算公式是解題的關鍵.8、B【解題分析】

設大正方形邊長為2,則小正方形邊長為1,所以大正方形面積為4,小正方形面積為1,則針孔扎到小正方形(陰影部分)的概率是0.1.【題目詳解】解:設大正方形邊長為2,則小正方形邊長為1,因為面積比是相似比的平方,

所以大正方形面積為4,小正方形面積為1,

則針孔扎到小正方形(陰影部分)的概率是;故選:B.【題目點撥】本題考查了概率公式:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率.9、B【解題分析】

先證明四邊形DBCE為平行四邊形,再根據矩形的判定進行解答.【題目詳解】∵四邊形ABCD為平行四邊形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四邊形BCED為平行四邊形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴?DBCE為矩形,故本選項錯誤;B、∵對角線互相垂直的平行四邊形為菱形,不一定為矩形,故本選項正確;C、∵∠ADB=90°,∴∠EDB=90°,∴?DBCE為矩形,故本選項錯誤;D、∵CE⊥DE,∴∠CED=90°,∴?DBCE為矩形,故本選項錯誤,故選B.【題目點撥】本題考查了平行四邊形的性質與判定,矩形的判定等,熟練掌握相關的判定定理與性質定理是解題的關鍵.10、B【解題分析】分析:先根據平行線的性質得出∠2+∠BAD=180°,再根據垂直的定義求出∠2的度數.詳解:∵直線a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于點A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故選B.點睛:本題主要考查了平行線的性質,解題的關鍵是掌握兩直線平行,同旁內角互補,此題難度不大.二、填空題(本大題共6個小題,每小題3分,共18分)11、﹣4ab【解題分析】

根據單項式與單項式的乘法解答即可.【題目詳解】2a×(﹣2b)=﹣4ab.故答案為﹣4ab.【題目點撥】本題考查了單項式的乘法,關鍵是根據單項式的乘法法則解答.12、1【解題分析】

首先根據題意列表,由列表求得所有等可能的結果與兩次都摸到黑球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【題目詳解】列表得:第一次第二次黑白白黑黑,黑白,黑白,黑白黑,白白,白白,白白黑,白白,白白,白∵共有9種等可能的結果,兩次都摸到黑球的只有1種情況,∴兩次都摸到黑球的概率是19故答案為:19【題目點撥】考查概率的計算,掌握概率等于所求情況數與總情況數之比是解題的關鍵.13、-【解題分析】

根據二次根式的運算法則即可求出答案.【題目詳解】原式=2.故答案為-.【題目點撥】本題考查二次根式的運算法則,解題的關鍵是熟練運用二次根式的運算法則,本題屬于基礎題型.14、C【解題分析】

先證明△BPE∽△CDP,再根據相似三角形對應邊成比例列出式子變形可得.【題目詳解】由已知可知∠EPD=90°,∴∠BPE+∠DPC=90°,∵∠DPC+∠PDC=90°,∴∠CDP=∠BPE,∵∠B=∠C=90°,∴△BPE∽△CDP,∴BP:CD=BE:CP,即x:3=y:(5-x),∴y=(0<x<5);故選C.考點:1.折疊問題;2.相似三角形的判定和性質;3.二次函數的圖象.15、11π﹣.【解題分析】

陰影部分的面積=扇形ECF的面積-△ACD的面積-△OCM的面積-扇形AOM的面積-弓形AN的面積.【題目詳解】解:連接OM,ON.∴OM=3,OC=6,∴∴∴扇形ECF的面積△ACD的面積扇形AOM的面積弓形AN的面積△OCM的面積∴陰影部分的面積=扇形ECF的面積?△ACD的面積?△OCM的面積?扇形AOM的面積?弓形AN的面積故答案為.【題目點撥】考查不規(guī)則圖形的面積的計算,掌握扇形的面積公式是解題的關鍵.16、﹣=1.【解題分析】原有的同學每人分擔的車費應該為,而實際每人分擔的車費為,方程應該表示為:﹣=1.故答案是:﹣=1.三、解答題(共8題,共72分)17、(1)購進A種樹苗的單價為200元/棵,購進B種樹苗的單價為300元/棵(2)A種樹苗至少需購進1棵【解題分析】

(1)設購進A種樹苗的單價為x元/棵,購進B種樹苗的單價為y元/棵,根據“若購進A種樹苗3棵,B種樹苗5棵,需210元,若購進A種樹苗4棵,B種樹苗1棵,需3800元”,即可得出關于x、y的二元一次方程組,解之即可得出結論;

(2)設需購進A種樹苗a棵,則購進B種樹苗(30-a)棵,根據總價=單價×購買數量結合購買兩種樹苗的總費用不多于8000元,即可得出關于a的一元一次不等式,解之取其中的最小值即可得出結論.【題目詳解】設購進A種樹苗的單價為x元/棵,購進B種樹苗的單價為y元/棵,根據題意得:3x+5y=21004x+10y=3800解得:x=200y=300答:購進A種樹苗的單價為200元/棵,購進B種樹苗的單價為300元/棵.(2)設需購進A種樹苗a棵,則購進B種樹苗(30﹣a)棵,根據題意得:200a+300(30﹣a)≤8000,解得:a≥1.∴A種樹苗至少需購進1棵.【題目點撥】本題考查了一元一次不等式的應用以及二元一次方程組的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據數量間的關系,正確列出一元一次不等式.18、(1)證明見解析;(2)①30°,②45°【解題分析】試題分析:(1)根據已知條件求得∠OAC=∠OCA,∠AOD=∠ADO,然后根據三角形內角和定理得出∠AOC=∠OAD,從而證得OC∥AD,即可證得結論;

(2)①若四邊形OCAD是菱形,則OC=AC,從而證得OC=OA=AC,得出∠即可求得

②AD與相切,根據切線的性質得出根據AD∥OC,內錯角相等得出從而求得試題解析:(方法不唯一)(1)∵OA=OC,AD=OC,∴OA=AD,∴∠OAC=∠OCA,∠AOD=∠ADO,∵OD∥AC,∴∠OAC=∠AOD,∴∠OAC=∠OCA=∠AOD=∠ADO,∴∠AOC=∠OAD,∴OC∥AD,∴四邊形OCAD是平行四邊形;(2)①∵四邊形OCAD是菱形,∴OC=AC,又∵OC=OA,∴OC=OA=AC,∴∴故答案為②∵AD與相切,∴∵AD∥OC,∴∴故答案為19、(1)∠EPF=120°;(2)AE+AF=6.【解題分析】試題分析:(1)過點P作PG⊥EF于G,解直角三角形即可得到結論;

(2)如圖2,過點P作PM⊥AB于M,PN⊥AD于N,證明△ABC≌△ADC,Rt△PME≌Rt△PNF,問題即可得證.試題解析:(1)如圖1,過點P作PG⊥EF于G,

∵PE=PF,

∴FG=EG=EF=2,∠FPG=∠EPG=∠EPF,

在△FPG中,sin∠FPG=,

∴∠FPG=60°,

∴∠EPF=2∠FPG=120°;

(2)如圖2,過點P作PM⊥AB于M,PN⊥AD于N,

∵四邊形ABCD是菱形,

∴AD=AB,DC=BC,

∴∠DAC=∠BAC,

∴PM=PN,

在Rt△PME于Rt△PNF中,,

∴Rt△PME≌Rt△PNF,

∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM=∠DAB=30°,

∴AM=AP?cos30°=3,同理AN=3,

∴AE+AF=(AM-EM)+(AN+NF)=6.【題目點撥】運用了菱形的性質,解直角三角形,全等三角形的判定和性質,最值問題,等腰三角形的性質,作輔助線構造直角三角形是解題的關鍵.20、(1)a=;(2)OP+AQ的最小值為2,此時點P的坐標為(﹣1,);(3)P(﹣4,8)或(4,8),【解題分析】

(1)利用待定系數法求出直線AB解析式,根據旋轉性質確定出C的坐標,代入二次函數解析式求出a的值即可;(2)連接BQ,可得PQ與OB平行,而PQ=OB,得到四邊形PQBO為平行四邊形,當Q在線段AB上時,求出OP+AQ的最小值,并求出此時P的坐標即可;(3)存在這樣的點P,使得∠QPO=∠OBC,如備用圖所示,延長PQ交x軸于點H,設此時點P的坐標為(m,m2),根據正切函數定義確定出m的值,即可確定出P的坐標.【題目詳解】解:(1)設直線AB解析式為y=kx+b,把A(﹣4,0),B(0,﹣2)代入得:,解得:,∴直線AB的解析式為y=﹣x﹣2,根據題意得:點C的坐標為(2,2),把C(2,2)代入二次函數解析式得:a=;(2)連接BQ,則易得PQ∥OB,且PQ=OB,∴四邊形PQBO是平行四邊形,∴OP=BQ,∴OP+AQ=BQ+AQ≥AB=2,(等號成立的條件是點Q在線段AB上),∵直線AB的解析式為y=﹣x﹣2,∴可設此時點Q的坐標為(t,﹣t﹣2),于是,此時點P的坐標為(t,﹣t),∵點P在拋物線y=x2上,∴﹣t=t2,解得:t=0或t=﹣1,∴當t=0,點P與點O重合,不合題意,應舍去,∴OP+AQ的最小值為2,此時點P的坐標為(﹣1,);(3)P(﹣4,8)或(4,8),如備用圖所示,延長PQ交x軸于點H,設此時點P的坐標為(m,m2),則tan∠HPO=,又,易得tan∠OBC=,當tan∠HPO=tan∠OBC時,可使得∠QPO=∠OBC,于是,得,解得:m=±4,所以P(﹣4,8)或(4,8).【題目點撥】此題屬于二次函數綜合題,涉及的知識有:二次函數的圖象與性質,待定系數法求一次函數解析式,旋轉的性質,以及銳角三角函數定義,熟練掌握各自的性質是解本題的關鍵.21、(1)證明見解析;(2)證明見解析;(3)74.【解題分析】

(1)根據四邊形ABCD和四邊形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可證△ACM∽△ABE;(2)連結AC,由△ACM∽△ABE得∠ACM=∠B=90°,易證∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,F(xiàn)C=CE,得MF=BD,從而可以證明四邊形BFMD是平行四邊形;(3)根據S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【題目詳解】(1)證明:∵四邊形ABCD和四邊形AEMN都是正方形,∴,∠CAB=∠MAC=45°,∴∠CAB-∠CAE=∠MAC-∠CAE,∴∠BAE=∠CAM,∴△ACM∽△ABE.(2)證明:連結AC因為△ACM∽△ABE,則∠ACM=∠B=90°,因為∠ACB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以點M,C,F在同一直線上,所以∠MCD=∠BDC=45°,所以BD平行MF,又因為MC=BE,F(xiàn)C=CE,所以MF=BC=BD,所以四邊形BFMD是平行四邊形(3)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM=62+42+(2+6)4+26=74.【題目點撥】本題主要考查了正方形的性質的應用,解此題的關鍵是能正確作出輔助線,綜合性比較強,有一定的難度.22、(1)y=0.2x+14(0<x<35);

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論