版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
安徽省桐城市第二中學(xué)2024年中考二模數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖⊙O的直徑垂直于弦,垂足是,,,的長為()A. B.4 C. D.82.如圖,將矩形ABCD繞點(diǎn)A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°).若∠1=112°,則∠α的大小是()A.68° B.20° C.28° D.22°3.在方格紙中,選擇標(biāo)有序號①②③④中的一個小正方形涂黑,與圖中陰影部分構(gòu)成中心對稱圖形.該小正方形的序號是()A.① B.② C.③ D.④4.如圖,在△ABC中,∠ACB=90°,沿CD折疊△CBD,使點(diǎn)B恰好落在AC邊上的點(diǎn)E處.若∠A=24°,則∠BDC的度數(shù)為()A.42° B.66° C.69° D.77°5.如圖是一組有規(guī)律的圖案,它們是由邊長相同的小正方形組成的,其中部分小正方形涂有陰影,依此規(guī)律,第2018個圖案中涂有陰影的小正方形個數(shù)為()A.8073 B.8072 C.8071 D.80706.如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,點(diǎn)P在x軸上,若以P,O,A為頂點(diǎn)的三角形是等腰三角形,則滿足條件的點(diǎn)P共有()A.2個 B.3個 C.4個 D.5個7.若△÷,則“△”可能是()A. B. C. D.8.如圖,AB是⊙O的直徑,點(diǎn)C、D是圓上兩點(diǎn),且∠AOC=126°,則∠CDB=()A.54° B.64° C.27° D.37°9.下列因式分解正確的是()A.x2+9=(x+3)2 B.a(chǎn)2+2a+4=(a+2)2C.a(chǎn)3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)10.如圖,在直角坐標(biāo)系中,直線與坐標(biāo)軸交于A、B兩點(diǎn),與雙曲線()交于點(diǎn)C,過點(diǎn)C作CD⊥x軸,垂足為D,且OA=AD,則以下結(jié)論:①;②當(dāng)0<x<3時,;③如圖,當(dāng)x=3時,EF=;④當(dāng)x>0時,隨x的增大而增大,隨x的增大而減小.其中正確結(jié)論的個數(shù)是()A.1 B.2 C.3 D.411.一組數(shù)據(jù)是4,x,5,10,11共五個數(shù),其平均數(shù)為7,則這組數(shù)據(jù)的眾數(shù)是()A.4 B.5 C.10 D.1112.如圖,在平行四邊形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④ B.②和③ C.③和④ D.②和④二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,正方形ABCD的邊長為6,E,F(xiàn)是對角線BD上的兩個動點(diǎn),且EF=,連接CE,CF,則△CEF周長的最小值為_____.14.因式分解:mn(n﹣m)﹣n(m﹣n)=_____.15.兩圓內(nèi)切,其中一個圓的半徑長為6,圓心距等于2,那么另一個圓的半徑長等于__.16.如圖,將一個長方形紙條折成如圖的形狀,若已知∠2=55°,則∠1=____.17.不等式組的最小整數(shù)解是_____.18.圖1是我國古代建筑中的一種窗格,其中冰裂紋圖案象征著堅(jiān)冰出現(xiàn)裂紋并開始消溶,形狀無一定規(guī)則,代表一種自然和諧美.圖2是從圖1冰裂紋窗格圖案中提取的由五條線段組成的圖形,則∠1+∠2+∠3+∠4+∠5=度.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)全民學(xué)習(xí)、終身學(xué)習(xí)是學(xué)習(xí)型社會的核心內(nèi)容,努力建設(shè)學(xué)習(xí)型家庭也是一個重要組成部分.為了解“學(xué)習(xí)型家庭”情況,對部分家庭五月份的平均每天看書學(xué)習(xí)時間進(jìn)行了一次抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息,解答下列問題:本次抽樣調(diào)查了個家庭;將圖①中的條形圖補(bǔ)充完整;學(xué)習(xí)時間在2~2.5小時的部分對應(yīng)的扇形圓心角的度數(shù)是度;若該社區(qū)有家庭有3000個,請你估計(jì)該社區(qū)學(xué)習(xí)時間不少于1小時的約有多少個家庭?20.(6分)如圖,方格紙中每個小正方形的邊長均為1,線段AB的兩個端點(diǎn)均在小正方形的頂點(diǎn)上.在圖中畫出以線段AB為一邊的矩形ABCD(不是正方形),且點(diǎn)C和點(diǎn)D均在小正方形的頂點(diǎn)上;在圖中畫出以線段AB為一腰,底邊長為2的等腰三角形ABE,點(diǎn)E在小正方形的頂點(diǎn)上,連接CE,請直接寫出線段CE的長.21.(6分)在等邊三角形ABC中,點(diǎn)P在△ABC內(nèi),點(diǎn)Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求證:△ABP≌△CAQ;請判斷△APQ是什么形狀的三角形?試說明你的結(jié)論.22.(8分)初三(5)班綜合實(shí)踐小組去湖濱花園測量人工湖的長,如圖A、D是人工湖邊的兩座雕塑,AB、BC是湖濱花園的小路,小東同學(xué)進(jìn)行如下測量,B點(diǎn)在A點(diǎn)北偏東60°方向,C點(diǎn)在B點(diǎn)北偏東45°方向,C點(diǎn)在D點(diǎn)正東方向,且測得AB=20米,BC=40米,求AD的長.(≈1.732,≈1.414,結(jié)果精確到0.01米)23.(8分)解不等式組24.(10分)規(guī)定:不相交的兩個函數(shù)圖象在豎直方向上的最短距離為這兩個函數(shù)的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點(diǎn)向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點(diǎn)與交點(diǎn)之間的距離,你同意他的看法嗎?請說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.25.(10分)一輛快車從甲地開往乙地,一輛慢車從乙地開往甲地,兩車同時出發(fā),設(shè)慢車離乙地的距離為y1(km),快車離乙地的距離為y2(km),慢車行駛時間為x(h),兩車之間的距離為S(km),y1,y2與x的函數(shù)關(guān)系圖象如圖①所示,S與x的函數(shù)關(guān)系圖象如圖②所示:(1)圖中的a=______,b=______.(2)求快車在行駛的過程中S關(guān)于x的函數(shù)關(guān)系式.(3)直接寫出兩車出發(fā)多長時間相距200km?26.(12分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,過點(diǎn)D作⊙O的切線DE交AC于點(diǎn)E.(1)求證:∠A=∠ADE;(2)若AB=25,DE=10,弧DC的長為a,求DE、EC和弧DC圍成的部分的面積S.(用含字母a的式子表示).27.(12分)隨著移動計(jì)算技術(shù)和無線網(wǎng)絡(luò)的快速發(fā)展,移動學(xué)習(xí)方式越來越引起人們的關(guān)注,某校計(jì)劃將這種學(xué)習(xí)方式應(yīng)用到教育學(xué)中,從全校1500名學(xué)生中隨機(jī)抽取了部分學(xué)生,對其家庭中擁有的移動設(shè)備的情況進(jìn)行調(diào)查,并繪制出如下的統(tǒng)計(jì)圖①和圖②,根據(jù)相關(guān)信息,解答下列問題:本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為,圖①中m的值為;求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);根據(jù)樣本數(shù)據(jù),估計(jì)該校1500名學(xué)生家庭中擁有3臺移動設(shè)備的學(xué)生人數(shù).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解題分析】
∵直徑AB垂直于弦CD,∴CE=DE=CD,∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,設(shè)OE=CE=x,∵OC=4,∴x2+x2=16,解得:x=2,即:CE=2,∴CD=4,故選C.2、D【解題分析】試題解析:∵四邊形ABCD為矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD繞點(diǎn)A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故選D.3、B【解題分析】根據(jù)中心對稱圖形的概念,中心對稱圖形是圖形沿對稱中心旋轉(zhuǎn)180度后與原圖重合。因此,通過觀察發(fā)現(xiàn),當(dāng)涂黑②時,所形成的圖形關(guān)于點(diǎn)A中心對稱。故選B。4、C【解題分析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折疊的性質(zhì)可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故選C.5、A【解題分析】
觀察圖形可知第1個、第2個、第3個圖案中涂有陰影的小正方形的個數(shù),易歸納出第n個圖案中涂有陰影的小正方形個數(shù)為:4n+1,由此求解即可.【題目詳解】解:觀察圖形的變化可知:第1個圖案中涂有陰影的小正方形個數(shù)為:5=4×1+1;第2個圖案中涂有陰影的小正方形個數(shù)為:9=4×2+1;第3個圖案中涂有陰影的小正方形個數(shù)為:13=4×3+1;…發(fā)現(xiàn)規(guī)律:第n個圖案中涂有陰影的小正方形個數(shù)為:4n+1;∴第2018個圖案中涂有陰影的小正方形個數(shù)為:4n+1=4×2018+1=1.故選:A.【題目點(diǎn)撥】本題考查了圖形的變化規(guī)律,根據(jù)已有圖形確定其變化規(guī)律是解題的關(guān)鍵.6、C【解題分析】
分為三種情況:①AP=OP,②AP=OA,③OA=OP,分別畫出即可.【題目詳解】如圖,分OP=AP(1點(diǎn)),OA=AP(1點(diǎn)),OA=OP(2點(diǎn))三種情況討論.∴以P,O,A為頂點(diǎn)的三角形是等腰三角形,則滿足條件的點(diǎn)P共有4個.故選C.【題目點(diǎn)撥】本題考查了等腰三角形的判定和坐標(biāo)與圖形的性質(zhì),主要考查學(xué)生的動手操作能力和理解能力,注意不要漏解.7、A【解題分析】
直接利用分式的乘除運(yùn)算法則計(jì)算得出答案.【題目詳解】。故選:A.【題目點(diǎn)撥】考查了分式的乘除運(yùn)算,正確分解因式再化簡是解題關(guān)鍵.8、C【解題分析】
由∠AOC=126°,可求得∠BOC的度數(shù),然后由圓周角定理,求得∠CDB的度數(shù).【題目詳解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°故選:C.【題目點(diǎn)撥】此題考查了圓周角定理.注意在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.9、C【解題分析】
試題分析:A、B無法進(jìn)行因式分解;C正確;D、原式=(1+2x)(1-2x)故選C,考點(diǎn):因式分解【題目詳解】請?jiān)诖溯斎朐斀猓?0、C【解題分析】試題分析:對于直線,令x=0,得到y(tǒng)=2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴(同底等高三角形面積相等),選項(xiàng)①正確;∴C(2,2),把C坐標(biāo)代入反比例解析式得:k=4,即,由函數(shù)圖象得:當(dāng)0<x<2時,,選項(xiàng)②錯誤;當(dāng)x=3時,,,即EF==,選項(xiàng)③正確;當(dāng)x>0時,隨x的增大而增大,隨x的增大而減小,選項(xiàng)④正確,故選C.考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.11、B【解題分析】試題分析:(4+x+3+30+33)÷3=7,解得:x=3,根據(jù)眾數(shù)的定義可得這組數(shù)據(jù)的眾數(shù)是3.故選B.考點(diǎn):3.眾數(shù);3.算術(shù)平均數(shù).12、D【解題分析】∵四邊形ABCD是平行四邊形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②與④不一定成立,∵當(dāng)四邊形是菱形時,②和④成立.故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2+4【解題分析】
如圖作CH∥BD,使得CH=EF=2,連接AH交BD由F,則△CEF的周長最小.【題目詳解】如圖作CH∥BD,使得CH=EF=2,連接AH交BD由F,則△CEF的周長最?。逤H=EF,CH∥EF,∴四邊形EFHC是平行四邊形,∴EC=FH,∵FA=FC,∴EC+CF=FH+AF=AH,∵四邊形ABCD是正方形,∴AC⊥BD,∵CH∥DB,∴AC⊥CH,∴∠ACH=90°,在Rt△ACH中,AH==4,∴△EFC的周長的最小值=2+4,故答案為:2+4.【題目點(diǎn)撥】本題考查軸對稱﹣?zhàn)疃虇栴},正方形的性質(zhì)、勾股定理、平行四邊形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用軸對稱解決最短問題.14、【解題分析】mn(n-m)-n(m-n)=mn(n-m)+n(n-m)=n(n-m)(m+1),故答案為n(n-m)(m+1).15、4或1【解題分析】∵兩圓內(nèi)切,一個圓的半徑是6,圓心距是2,∴另一個圓的半徑=6-2=4;或另一個圓的半徑=6+2=1,故答案為4或1.【題目點(diǎn)撥】本題考查了根據(jù)兩圓位置關(guān)系來求圓的半徑的方法.注意圓的半徑是6,要分大圓和小圓兩種情況討論.16、1【解題分析】
由折疊可得∠3=180°﹣2∠2,進(jìn)而可得∠3的度數(shù),然后再根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)可得∠1+∠3=180°,進(jìn)而可得∠1的度數(shù).【題目詳解】解:由折疊可得∠3=180°﹣2∠2=180°﹣1°=70°,∵AB∥CD,∴∠1+∠3=180°,∴∠1=180°﹣70°=1°,故答案為1.17、-1【解題分析】分析:先求出每個不等式的解集,再求出不等式組的解集,即可得出答案.詳解:.∵解不等式①得:x>-3,解不等式②得:x≤1,∴不等式組的解集為-3<x≤1,∴不等式組的最小整數(shù)解是-1,故答案為:-1.點(diǎn)睛:本題考查了解一元一次不等式組和不等式組的整數(shù)解,能根據(jù)不等式的解集得出不等式組的解集是解此題的關(guān)鍵.18、360°.【解題分析】
根據(jù)多邊形的外角和等于360°解答即可.【題目詳解】由多邊形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案為360°.【題目點(diǎn)撥】本題考查的是多邊形的內(nèi)角和外角,掌握多邊形的外角和等于360°是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)200;(2)見解析;(3)36;(4)該社區(qū)學(xué)習(xí)時間不少于1小時的家庭約有2100個.【解題分析】
(1)根據(jù)1.5~2小時的圓心角度數(shù)求出1.5~2小時所占的百分比,再用1.5~2小時的人數(shù)除以所占的百分比,即可得出本次抽樣調(diào)查的總家庭數(shù);(2)用抽查的總?cè)藬?shù)乘以學(xué)習(xí)0.5-1小時的家庭所占的百分比求出學(xué)習(xí)0.5-1小時的家庭數(shù),再用總?cè)藬?shù)減去其它家庭數(shù),求出學(xué)習(xí)2-2.5小時的家庭數(shù),從而補(bǔ)全統(tǒng)計(jì)圖;(3)用360°乘以學(xué)習(xí)時間在2~2.5小時所占的百分比,即可求出學(xué)習(xí)時間在2~2.5小時的部分對應(yīng)的扇形圓心角的度數(shù);(4)用該社區(qū)所有家庭數(shù)乘以學(xué)習(xí)時間不少于1小時的家庭數(shù)所占的百分比即可得出答案.【題目詳解】解:(1)本次抽樣調(diào)查的家庭數(shù)是:30÷=200(個);故答案為200;(2)學(xué)習(xí)0.5﹣1小時的家庭數(shù)有:200×=60(個),學(xué)習(xí)2﹣2.5小時的家庭數(shù)有:200﹣60﹣90﹣30=20(個),補(bǔ)圖如下:(3)學(xué)習(xí)時間在2~2.5小時的部分對應(yīng)的扇形圓心角的度數(shù)是:360×=36°;故答案為36;(4)根據(jù)題意得:3000×=2100(個).答:該社區(qū)學(xué)習(xí)時間不少于1小時的家庭約有2100個.【題目點(diǎn)撥】本題考查條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖及相關(guān)計(jì)算.在扇形統(tǒng)計(jì)圖中,每部分占總部分的百分比等于該部分所對應(yīng)的扇形圓心角的度數(shù)與360°的比.20、作圖見解析;CE=4.【解題分析】分析:利用數(shù)形結(jié)合的思想解決問題即可.詳解:如圖所示,矩形ABCD和△ABE即為所求;CE=4.點(diǎn)睛:本題考查作圖-應(yīng)用與設(shè)計(jì)、等腰三角形的性質(zhì)、勾股定理、矩形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用思想結(jié)合的思想解決問題.21、(1)證明見解析;(2)△APQ是等邊三角形.【解題分析】
(1)根據(jù)等邊三角形的性質(zhì)可得AB=AC,再根據(jù)SAS證明△ABP≌△ACQ;(2)根據(jù)全等三角形的性質(zhì)得到AP=AQ,再證∠PAQ=60°,從而得出△APQ是等邊三角形.【題目詳解】證明:(1)∵△ABC為等邊三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等邊三角形.【題目點(diǎn)撥】本題考查了全等三角形的判定,考查了全等三角形對應(yīng)邊相等的性質(zhì),考查了正三角形的判定,本題中求證,△ABP≌△ACQ是解題的關(guān)鍵.22、AD=38.28米.【解題分析】
過點(diǎn)B作BE⊥DA,BF⊥DC,垂足分別為E、F,已知AD=AE+ED,則分別求得AE、DE的長即可求得AD的長.【題目詳解】過點(diǎn)B作BE⊥DA,BF⊥DC,垂足分別為E,F(xiàn),由題意知,AD⊥CD∴四邊形BFDE為矩形∴BF=ED在Rt△ABE中,AE=AB?cos∠EAB在Rt△BCF中,BF=BC?cos∠FBC∴AD=AE+BF=20?cos60°+40?cos45°=20×+40×=10+20=10+20×1.414=38.28(米).即AD=38.28米.【題目點(diǎn)撥】解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.23、﹣1≤x<1.【解題分析】
分別求出不等式組中兩不等式的解集,找出兩解集的公共部分即可.【題目詳解】解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<1,則不等式組的解集為﹣1≤x<1.【題目點(diǎn)撥】此題考查了解一元一次不等式組,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.24、(1)2;(2)不同意他的看法,理由詳見解析;(3)c=1.【解題分析】
(1)把y=x2﹣2x+3配成頂點(diǎn)式得到拋物線上的點(diǎn)到x軸的最短距離,然后根據(jù)題意解決問題;(2)如圖,P點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),則PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函數(shù)的性質(zhì)得到拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”,然后對他的看法進(jìn)行判斷;(3)M點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),與(2)方法一樣得到MN的最小值為﹣c,從而得到拋物線y=x2﹣2x+3與拋物線的“親近距離”,所以,然后解方程即可.【題目詳解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴拋物線上的點(diǎn)到x軸的最短距離為2,∴拋物線y=x2﹣2x+3與x軸的“親近距離”為:2;(2)不同意他的看法.理由如下:如圖,P點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,當(dāng)t=時,PQ有最小值,最小值為,∴拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”為,而過拋物線的頂點(diǎn)向x軸作垂線與直線相交,拋物線頂點(diǎn)與交點(diǎn)之間的距離為2,∴不同意他的看法;(3)M點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,當(dāng)t=時,MN有最小值,最小值為﹣c,∴拋物線y=x2﹣2x+3與拋物線的“親近距離”為﹣c,∴,∴c=1.【題目點(diǎn)撥】本題是二次函數(shù)的綜合題,考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征和二次函數(shù)的性質(zhì),正確理解新定義是解題的關(guān)鍵.25、(1)a=6,b=;(2);(3)或5h【解題分析】
(1)根據(jù)S與x之間的函數(shù)關(guān)系式可以得到當(dāng)位于C點(diǎn)時,兩人之間的距離增加變緩,此時快車到站,指出此時a的值即可,求得a的值后求出兩車相遇時的時間即為b的值;(2)根據(jù)函數(shù)的圖像可以得到A、B、C、D的點(diǎn)的坐標(biāo),利用待定系數(shù)法求得函數(shù)的解析式即可.(3)分兩車相遇前和兩車相遇后兩種情況討論,當(dāng)相遇前令s=200即可求得x的值.【題目詳解】解:(1)由s與x之間的函數(shù)的圖像可知:當(dāng)位于C點(diǎn)時,兩車之間的距離增加變緩,由此可以得到a=6,∵快車每小時行駛100千米,慢車每小時行駛60千米,兩地之間的距離為600,∴;(2)∵從函數(shù)的圖象上可以得到A、B、C、D點(diǎn)的坐標(biāo)分別為:(0,600)、(,0)、(6,360)、(10,600),∴設(shè)線段AB所在直線解析式為:S=kx+b,∴解得:k=-160,b=600,設(shè)線段BC所在的直線的解析式為:S=kx+b,∴解得:k=160,b=-600,設(shè)直線CD的解析式為:S=kx+b,解得:k=60,b=0∴(3)當(dāng)兩車相遇前相距200km,此時:S=-160x+600=200,解得:,當(dāng)兩車相遇后相距200km,此時:S=160x-600=200,解得:x=5,∴或5時兩車相距200千米【題目點(diǎn)撥】本題考查了一次函數(shù)的綜合知識,特別是本題中涉及到了分段函數(shù)的知識,解題時主要自變量的取值范圍.26、(1)見解析;(2)75﹣a.【解題分析】
(1)連接C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 石河子大學(xué)《應(yīng)急人力資源管理》2022-2023學(xué)年第一學(xué)期期末試卷
- 物業(yè)智能化解決方案
- 石河子大學(xué)《數(shù)學(xué)文化賞析》2021-2022學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《口腔頜面外科學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《工程熱力學(xué)與傳熱學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 精神科新冠肺炎演練
- 沈陽理工大學(xué)《數(shù)學(xué)建?!?023-2024學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《液壓與氣動技術(shù)》2022-2023學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《電氣控制與PC技術(shù)》2022-2023學(xué)年期末試卷
- 沈陽理工大學(xué)《場地設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷
- 創(chuàng)新創(chuàng)業(yè)實(shí)訓(xùn)智慧樹知到期末考試答案章節(jié)答案2024年西安理工大學(xué)
- 2024屆宜賓市九年級語文上學(xué)期期中考試卷附答案解析
- 大學(xué)生國家安全教育智慧樹知到期末考試答案2024年
- 2024繼續(xù)教育《醫(yī)學(xué)科研誠信與醫(yī)學(xué)了研究倫理》答案
- 第三方破壞事故分析與對策
- 投標(biāo)保證金退付申請書四篇
- 鉆井常用計(jì)算公式
- 混凝土澆筑監(jiān)理旁站記錄(完整)
- 創(chuàng)傷的救治流程PPT課件
- 上公司財(cái)務(wù)風(fēng)險(xiǎn)分析與防范——以蘇寧云商為例
- 價值觀考核評定表
評論
0/150
提交評論