版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024學年海南省??诰胖袑W海甸分校中考數(shù)學押題卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.下列各圖中a、b、c為三角形的邊長,則甲、乙、丙三個三角形和左側(cè)△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙2.港珠澳大橋是連接香港、珠海、澳門的超大型跨海通道,全長約55000米,把55000用科學記數(shù)法表示為()A.55×103 B.5.5×104 C.5.5×105 D.0.55×1053.下列四個圖形中,是中心對稱圖形的是()A. B. C. D.4.如圖所示,如果將一副三角板按如圖方式疊放,那么∠1等于()A. B. C. D.5.如圖,在正方形ABCD中,AB=9,點E在CD邊上,且DE=2CE,點P是對角線AC上的一個動點,則PE+PD的最小值是()A. B. C.9 D.6.如圖,已知l1∥l2,∠A=40°,∠1=60°,則∠2的度數(shù)為()A.40° B.60° C.80° D.100°7.甲、乙兩人分別以4m/s和5m/s的速度,同時從100m直線型跑道的起點向同一方向起跑,設乙的奔跑時間為t(s),甲乙兩人的距離為S(m),則S關(guān)于t的函數(shù)圖象為()A. B. C. D.8.關(guān)于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,則()A.a(chǎn)≠±1 B.a(chǎn)=1 C.a(chǎn)=﹣1 D.a(chǎn)=±19.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:①2a+b=0,②當﹣1≤x≤3時,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函數(shù)圖象上,當0<x1<x2時,y1<y2,其中正確的是()A.①②④ B.①③ C.①②③ D.①③④10.下列四個數(shù)表示在數(shù)軸上,它們對應的點中,離原點最遠的是()A.﹣2 B.﹣1 C.0 D.1二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,直線與雙曲線(k≠0)相交于A(﹣1,)、B兩點,在y軸上找一點P,當PA+PB的值最小時,點P的坐標為_________.12.下列對于隨機事件的概率的描述:①拋擲一枚均勻的硬幣,因為“正面朝上”的概率是0.5,所以拋擲該硬幣100次時,就會有50次“正面朝上”;②一個不透明的袋子里裝有4個黑球,1個白球,這些球除了顏色外無其他差別.從中隨機摸出一個球,恰好是白球的概率是0.2;③測試某射擊運動員在同一條件下的成績,隨著射擊次數(shù)的增加,“射中9環(huán)以上”的頻率總是在0.85附近擺動,顯示出一定的穩(wěn)定性,可以估計該運動員“射中9環(huán)以上”的概率是0.85其中合理的有______(只填寫序號).13.如圖,平行于x軸的直線AC分別交拋物線(x≥0)與(x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則=_.14.滿足的整數(shù)x的值是_____.15.二次函數(shù)y=ax2+bx+c的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點坐標為(,﹣2);⑤當x<時,y隨x的增大而減??;⑥a+b+c>0中,正確的有______.(只填序號)16.如圖所示,矩形ABCD的頂點D在反比例函數(shù)(x<0)的圖象上,頂點B,C在x軸上,對角線AC的延長線交y軸于點E,連接BE,△BCE的面積是6,則k=_____.三、解答題(共8題,共72分)17.(8分)如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分線交邊AC于點D,延長BD至點E,且BD=2DE,連接AE.(1)求線段CD的長;(2)求△ADE的面積.18.(8分)已知關(guān)于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求證:無論實數(shù)m取何值,方程總有兩個實數(shù)根;(2)若方程兩個根均為正整數(shù),求負整數(shù)m的值.19.(8分)定義:在三角形中,把一邊的中點到這條邊的高線的距離叫做這條邊的中垂距.例:如圖①,在△ABC中,D為邊BC的中點,AE⊥BC于E,則線段DE的長叫做邊BC的中垂距.(1)設三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是,推斷的數(shù)學依據(jù)是.(2)如圖②,在△ABC中,∠B=15°,AB=3,BC=8,AD為邊BC的中線,求邊BC的中垂距.(3)如圖③,在矩形ABCD中,AB=6,AD=1.點E為邊CD的中點,連結(jié)AE并延長交BC的延長線于點F,連結(jié)AC.求△ACF中邊AF的中垂距.20.(8分)路邊路燈的燈柱垂直于地面,燈桿的長為2米,燈桿與燈柱成角,錐形燈罩的軸線與燈桿垂直,且燈罩軸線正好通過道路路面的中心線(在中心線上).已知點與點之間的距離為12米,求燈柱的高.(結(jié)果保留根號)21.(8分)(1)(問題發(fā)現(xiàn))小明遇到這樣一個問題:如圖1,△ABC是等邊三角形,點D為BC的中點,且滿足∠ADE=60°,DE交等邊三角形外角平分線CE所在直線于點E,試探究AD與DE的數(shù)量關(guān)系.(1)小明發(fā)現(xiàn),過點D作DF//AC,交AC于點F,通過構(gòu)造全等三角形,經(jīng)過推理論證,能夠使問題得到解決,請直接寫出AD與DE的數(shù)量關(guān)系:;(2)(類比探究)如圖2,當點D是線段BC上(除B,C外)任意一點時(其它條件不變),試猜想AD與DE之間的數(shù)量關(guān)系,并證明你的結(jié)論.(3)(拓展應用)當點D在線段BC的延長線上,且滿足CD=BC(其它條件不變)時,請直接寫出△ABC與△ADE的面積之比.22.(10分)如圖,在方格紙中.(1)請在方格紙上建立平面直角坐標系,使,,并求出點坐標;(2)以原點為位似中心,相似比為2,在第一象限內(nèi)將放大,畫出放大后的圖形;(3)計算的面積.23.(12分)如圖,在△ABC中,點D在邊BC上,聯(lián)結(jié)AD,∠ADB=∠CDE,DE交邊AC于點E,DE交BA延長線于點F,且AD2=DE?DF.(1)求證:△BFD∽△CAD;(2)求證:BF?DE=AB?AD.24.如圖1,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.(1)求證:△AEF是等腰直角三角形;(2)如圖2,將△CED繞點C逆時針旋轉(zhuǎn),當點E在線段BC上時,連接AE,求證:AF=AE;(3)如圖3,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),當平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】分析:根據(jù)三角形全等的判定方法得出乙和丙與△ABC全等,甲與△ABC不全等.詳解:乙和△ABC全等;理由如下:在△ABC和圖乙的三角形中,滿足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和圖丙的三角形中,滿足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲與△ABC全等;故選B.點睛:本題考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.2、B【解題分析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】55000是5位整數(shù),小數(shù)點向左移動4位后所得的數(shù)即可滿足科學記數(shù)法的要求,由此可知10的指數(shù)為4,所以,55000用科學記數(shù)法表示為5.5×104,故選B.【題目點撥】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.3、D【解題分析】試題分析:根據(jù)中心對稱圖形的定義,結(jié)合選項所給圖形進行判斷即可.解:A、不是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,故本選項錯誤;C、不是中心對稱圖形,故本選項錯誤;D、是中心對稱圖形,故本選項正確;故選D.考點:中心對稱圖形.4、B【解題分析】解:如圖,∠2=90°﹣45°=45°,由三角形的外角性質(zhì)得,∠1=∠2+60°=45°+60°=105°.故選B.點睛:本題考查了三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.5、A【解題分析】解:如圖,連接BE,設BE與AC交于點P′,∵四邊形ABCD是正方形,∴點B與D關(guān)于AC對稱,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC與BE的交點上時,PD+PE最小,為BE的長度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故選A.點睛:此題考查了軸對稱﹣﹣最短路線問題,正方形的性質(zhì),要靈活運用對稱性解決此類問題.找出P點位置是解題的關(guān)鍵.6、D【解題分析】
根據(jù)兩直線平行,內(nèi)錯角相等可得∠3=∠1,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式計算即可得解.【題目詳解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故選D.【題目點撥】本題考查了平行線的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)并準確識圖是解題的關(guān)鍵.7、B【解題分析】
勻速直線運動的路程s與運動時間t成正比,s-t圖象是一條傾斜的直線解答.【題目詳解】∵甲、乙兩人分別以4m/s和5m/s的速度,∴兩人的相對速度為1m/s,設乙的奔跑時間為t(s),所需時間為20s,兩人距離20s×1m/s=20m,故選B.【題目點撥】此題考查函數(shù)圖象問題,關(guān)鍵是根據(jù)勻速直線運動的路程s與運動時間t成正比解答.8、C【解題分析】
根據(jù)一元一次方程的定義即可求出答案.【題目詳解】由題意可知:,解得a=?1故選C.【題目點撥】本題考查一元二次方程的定義,解題的關(guān)鍵是熟練運用一元二次方程的定義,本題屬于基礎題型.9、B【解題分析】∵函數(shù)圖象的對稱軸為:x=-==1,∴b=﹣2a,即2a+b=0,①正確;由圖象可知,當﹣1<x<3時,y<0,②錯誤;由圖象可知,當x=1時,y=0,∴a﹣b+c=0,∵b=﹣2a,∴3a+c=0,③正確;∵拋物線的對稱軸為x=1,開口方向向上,∴若(x1,y1)、(x2,y2)在函數(shù)圖象上,當1<x1<x2時,y1<y2;當x1<x2<1時,y1>y2;故④錯誤;故選B.點睛:本題主要考查二次函數(shù)的相關(guān)知識,解題的關(guān)鍵是:由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理.10、A【解題分析】
由于要求四個數(shù)的點中距離原點最遠的點,所以求這四個點對應的實數(shù)絕對值即可求解.【題目詳解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四個數(shù)表示在數(shù)軸上,它們對應的點中,離原點最遠的是-1.故選A.【題目點撥】本題考查了實數(shù)與數(shù)軸的對應關(guān)系,以及估算無理數(shù)大小的能力,也利用了數(shù)形結(jié)合的思想.二、填空題(本大題共6個小題,每小題3分,共18分)11、(0,).【解題分析】試題分析:把點A坐標代入y=x+4得a=3,即A(﹣1,3),把點A坐標代入雙曲線的解析式得3=﹣k,即k=﹣3,聯(lián)立兩函數(shù)解析式得:,解得:,,即點B坐標為:(﹣3,1),作出點A關(guān)于y軸的對稱點C,連接BC,與y軸的交點即為點P,使得PA+PB的值最小,則點C坐標為:(1,3),設直線BC的解析式為:y=ax+b,把B、C的坐標代入得:,解得:,所以函數(shù)解析式為:y=x+,則與y軸的交點為:(0,).考點:反比例函數(shù)與一次函數(shù)的交點問題;軸對稱-最短路線問題.12、②③【解題分析】
大量反復試驗下頻率穩(wěn)定值即概率.注意隨機事件發(fā)生的概率在0和1之間.根據(jù)事件的類型及概率的意義找到正確選項即可.【題目詳解】解:①拋擲一枚均勻的硬幣,因為“正面朝上”的概率是0.5,所以拋擲該硬幣100次時,大約有50次“正面朝上”,此結(jié)論錯誤;②一個不透明的袋子里裝有4個黑球,1個白球,這些球除了顏色外無其他差別.從中隨機摸出一個球,恰好是白球的概率是,此結(jié)論正確;③測試某射擊運動員在同一條件下的成績,隨著射擊次數(shù)的增加,“射中9環(huán)以上”的頻率總是在0.85附近擺動,顯示出一定的穩(wěn)定性,可以估計該運動員“射中9環(huán)以上”的概率是0.85,此結(jié)論正確;故答案為:②③.【題目點撥】本題考查了概率的意義,解題的關(guān)鍵在于掌握計算公式.13、5-【解題分析】試題分析:本題我們可以假設一個點的坐標,然后進行求解.設點C的坐標為(1,),則點B的坐標為(,),點D的坐標為(1,1),點E的坐標為(,1),則AB=,DE=-1,則=5-.考點:二次函數(shù)的性質(zhì)14、3,1【解題分析】
直接得出2<<3,1<<5,進而得出答案.【題目詳解】解:∵2<<3,1<<5,∴的整數(shù)x的值是:3,1.故答案為:3,1.【題目點撥】此題主要考查了估算無理數(shù)的大小,正確得出接近的有理數(shù)是解題關(guān)鍵.15、①②③⑤【解題分析】
根據(jù)圖象可判斷①②③④⑤,由x=1時,y<0,可判斷⑥【題目詳解】由圖象可得,a>0,c<0,b<0,△=b2﹣4ac>0,對稱軸為x=∴abc>0,4ac<b2,當時,y隨x的增大而減?。盛佗冖菡_,∵∴2a+b>0,故③正確,由圖象可得頂點縱坐標小于﹣2,則④錯誤,當x=1時,y=a+b+c<0,故⑥錯誤故答案為:①②③⑤【題目點撥】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.16、-1【解題分析】
先設D(a,b),得出CO=-a,CD=AB=b,k=ab,再根據(jù)△BCE的面積是6,得出BC×OE=1,最后根據(jù)AB∥OE,得出,即BC?EO=AB?CO,求得ab的值即可.【題目詳解】設D(a,b),則CO=-a,CD=AB=b,∵矩形ABCD的頂點D在反比例函數(shù)y=(x<0)的圖象上,∴k=ab,∵△BCE的面積是6,∴×BC×OE=6,即BC×OE=1,∵AB∥OE,∴,即BC?EO=AB?CO,∴1=b×(-a),即ab=-1,∴k=-1,故答案為-1.【題目點撥】本題主要考查了反比例函數(shù)系數(shù)k的幾何意義,矩形的性質(zhì)以及平行線分線段成比例定理的綜合應用,能很好地考核學生分析問題,解決問題的能力.解題的關(guān)鍵是將△BCE的面積與點D的坐標聯(lián)系在一起,體現(xiàn)了數(shù)形結(jié)合的思想方法.三、解答題(共8題,共72分)17、(1)43;(2)S【解題分析】分析:(1)過點D作DH⊥AB,根據(jù)角平分線的性質(zhì)得到DH=DC根據(jù)正弦的定義列出方程,解方程即可;(2)根據(jù)三角形的面積公式計算.詳解:(1)過點D作DH⊥AB,垂足為點H.∵BD平分∠ABC,∠C=90°,∴DH=DC=x,則AD=3﹣x.∵∠C=90°,AC=3,BC=4,∴AB=1.∵sin∠BAC=HDAD=(2)S△ABD∵BD=2DE,∴S△ABD點睛:本題考查的是角平分線的性質(zhì),掌握角的平分線上的點到角的兩邊的距離相等是解題的關(guān)鍵.18、(1)見解析;(2)m=-1.【解題分析】
(1)根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=1>1,由此即可證出:無論實數(shù)m取什么值,方程總有兩個不相等的實數(shù)根;
(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根據(jù)已知條件即可得出結(jié)論.【題目詳解】(1)∵△=(m+3)2﹣4(m+2)=(m+1)2∴無論m取何值,(m+1)2恒大于等于1∴原方程總有兩個實數(shù)根(2)原方程可化為:(x-1)(x-m-2)=1∴x1=1,x2=m+2∵方程兩個根均為正整數(shù),且m為負整數(shù)∴m=-1.【題目點撥】本題考查了一元二次方程與根的判別式,解題的關(guān)鍵是熟練的掌握根的判別式與根據(jù)因式分解法解一元二次方程.19、(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等;(2)1;(3).【解題分析】試題分析:(1)根據(jù)線段的垂直平分線的性質(zhì)即可判斷.(2)如圖②中,作AE⊥BC于E.根據(jù)已知得出AE=BE,再求出BD的長,即可求出DE的長.(3)如圖③中,作CH⊥AF于H,先證△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的長,然后證明△ADE∽△CHE,建立方程求出EH即可.解:(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等(2)解:如圖②中,作AE⊥BC于E.在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3,∴AE=BE=3,∵AD為BC邊中線,BC=8,∴BD=DC=1,∴DE=BD﹣BE=1﹣3=1,∴邊BC的中垂距為1(3)解:如圖③中,作CH⊥AF于H.∵四邊形ABCD是矩形,∴∠D=∠EHC=∠ECF=90°,AD∥BF,∵DE=EC,∠AED=∠CEF,∴△ADE≌△FCE,∴AE=EF,在Rt△ADE中,∵AD=1,DE=3,∴AE==5,∵∠D=EHC,∠AED=∠CEH,∴△ADE∽△CHE,∴=,∴=,∴EH=,∴△ACF中邊AF的中垂距為20、【解題分析】
設燈柱BC的長為h米,過點A作AH⊥CD于點H,過點B作BE⊥AH于點E,構(gòu)造出矩形BCHE,Rt△AEB,然后解直角三角形求解.【題目詳解】解:設燈柱的長為米,過點作于點過點做于點∴四邊形為矩形,∵∴又∵∴在中,∴∴又∴在中,解得,(米)∴燈柱的高為米.21、(1)AD=DE;(2)AD=DE,證明見解析;(3).【解題分析】試題分析:本題難度中等.主要考查學生對探究例子中的信息進行歸納總結(jié).并能夠結(jié)合三角形的性質(zhì)是解題關(guān)鍵.試題解析:(10分)(1)AD=DE.(2)AD=DE.證明:如圖2,過點D作DF//AC,交AC于點F,∵△ABC是等邊三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°.又∵DF//AC,∴∠BDF=∠BFD=60°∴△BDF是等邊三角形,BF=BD,∠BFD=60°,∴AF=CD,∠AFD=120°.∵EC是外角的平分線,∠DCE=120°=∠AFD.∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠FAD=60°+∠FAD.∵∠ADC=∠ADE+∠EDC=60°+∠EDC,∴∠FAD=∠EDC.∴△AFD≌△DCE(ASA),∴AD=DE;(3).考點:1.等邊三角形探究題;2.全等三角形的判定與性質(zhì);3.等邊三角形的判定與性質(zhì).22、(1)作圖見解析;.(2)作圖見解析;(3)1.【解題分析】分析:(1)直接利用A,C點坐標得出原點位置進而得出答案;(2)利用位似圖形的性質(zhì)即可得出△A'B'C';(3)直接利用(2)中圖形求出三角形面積即可.詳解:(1)如圖所示,即為所求的直角坐標系;B(2,1);(2)如圖:△A'B'C'即為所求;(3)S△A'B'C'=×4×8=1.點睛:此題主要考查了位似變換以及三角形面積求法,正確得出對應點位置是解題的關(guān)鍵.畫位似圖形的一般步驟為:①確定位似中心;②分別連接并延長位似中心和關(guān)鍵點;③根據(jù)位似比,確定位似圖形的關(guān)鍵點;④順次連接上述各點,得到放大或縮小的圖形.23、見解析【解題分析】試題分析:(1),,可得∽,從而得,再根據(jù)∠BDF=∠CDA即可證;(2)由∽,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 細胞應激反應的
- 基于差動變壓器原理的多臂井徑儀探頭技術(shù)研究
- 2014-2020年精密空調(diào)行業(yè)咨詢報告
- 2024至2030年中國無煙全自動化燃煤氣化燃燒鍋爐數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國岸邊固定回轉(zhuǎn)吊行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年中國雙端面機械密封數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國加強型輸送網(wǎng)帶行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年中國CL雙直線杯數(shù)據(jù)監(jiān)測研究報告
- 2024年中國飼料塔市場調(diào)查研究報告
- 2024年中國船舶通訊導航專用電源市場調(diào)查研究報告
- 河南省鄭州市第四初級中學2024-2025學年八年級上學期期中考試物理試卷
- 2024年安徽國資國企研究院限公司公開招聘工作人員4名高頻難、易錯點500題模擬試題附帶答案詳解
- 中學校園商店招標公告
- 山東省青島市六年級數(shù)學上學期期中考試真題重組卷
- 北京市東城區(qū)2023-2024學年九年級上學期期末語文試題(含答案)
- 管道變形監(jiān)測與健康評估
- 2024年港澳臺華僑生入學考試物理試卷試題真題(含答案詳解)
- Unit4閱讀課件滬教牛津版(2024)七年級英語上冊
- 大學美育 課件 第四篇 科技之美 第二章第一節(jié) 高鐵之美;第二節(jié) 橋梁之美;第三節(jié) 公路之美
- GRS化學品管理手冊
- 2023-2024學年粵教版(2019)高中信息技術(shù)必修一《數(shù)據(jù)與計算》第五章第二節(jié)《數(shù)據(jù)的采集》教案
評論
0/150
提交評論