廣東省深圳市坪山區(qū)2024屆中考數(shù)學適應性模擬試題含解析_第1頁
廣東省深圳市坪山區(qū)2024屆中考數(shù)學適應性模擬試題含解析_第2頁
廣東省深圳市坪山區(qū)2024屆中考數(shù)學適應性模擬試題含解析_第3頁
廣東省深圳市坪山區(qū)2024屆中考數(shù)學適應性模擬試題含解析_第4頁
廣東省深圳市坪山區(qū)2024屆中考數(shù)學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

廣東省深圳市坪山區(qū)2024學年中考數(shù)學適應性模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算﹣8+3的結果是()A.﹣11 B.﹣5 C.5 D.112.小帶和小路兩個人開車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,小帶和小路兩人車離開A城的距離y(km)與行駛的時間t(h)之間的函數(shù)關系如圖所示.有下列結論;①A,B兩城相距300km;②小路的車比小帶的車晚出發(fā)1h,卻早到1h;③小路的車出發(fā)后2.5h追上小帶的車;④當小帶和小路的車相距50km時,t=或t=.其中正確的結論有()A.①②③④ B.①②④C.①② D.②③④3.如圖,直角三角形ABC中,∠C=90°,AC=2,AB=4,分別以AC、BC為直徑作半圓,則圖中陰影部分的面積為()A.2π﹣ B.π+ C.π+2 D.2π﹣24.下列方程中是一元二次方程的是()A. B.C. D.5.估算的運算結果應在(

)A.2到3之間 B.3到4之間C.4到5之間 D.5到6之間6.如圖,四邊形ABCD內(nèi)接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,則∠BDC的度數(shù)為()A.100° B.105° C.110° D.115°7.如圖,在射線AB上順次取兩點C,D,使AC=CD=1,以CD為邊作矩形CDEF,DE=2,將射線AB繞點A沿逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角記為α(其中0°<α<45°),旋轉(zhuǎn)后記作射線AB′,射線AB′分別交矩形CDEF的邊CF,DE于點G,H.若CG=x,EH=y,則下列函數(shù)圖象中,能反映y與x之間關系的是()A. B. C. D.8.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值29.中國傳統(tǒng)扇文化有著深厚的底蘊,下列扇面圖形是中心對稱圖形的是()A. B. C. D.10.已知關于x的一元二次方程有兩個相等的實根,則k的值為()A. B. C.2或3 D.或二、填空題(共7小題,每小題3分,滿分21分)11.一次函數(shù)與的圖象如圖,則的解集是__.12.Rt△ABC的邊AB=5,AC=4,BC=3,矩形DEFG的四個頂點都在Rt△ABC的邊上,當矩形DEFG的面積最大時,其對角線的長為_______.13.如圖,點A在雙曲線上,AB⊥x軸于B,且△AOB的面積S△AOB=2,則k=______.14.如圖,為了測量某棵樹的高度,小明用長為2m的竹竿做測量工具,移動竹竿,使竹竿、樹的頂端的影子恰好落在地面的同一點.此時,竹竿與這一點距離相距6m,與樹相距15m,則樹的高度為_________m.15.對于一切不小于2的自然數(shù)n,關于x的一元二次方程x2﹣(n+2)x﹣2n2=0的兩個根記作an,bn(n≥2),則______16.如圖,⊙O的半徑為1cm,正六邊形ABCDEF內(nèi)接于⊙O,則圖中陰影部分面積為_____cm1.(結果保留π)17.中國的陸地面積約為9600000km2,把9600000用科學記數(shù)法表示為.三、解答題(共7小題,滿分69分)18.(10分)2018年平昌冬奧會在2月9日到25日在韓國平昌郡舉行,為了調(diào)查中學生對冬奧會比賽項目的了解程度,某中學在學生中做了一次抽樣調(diào)查,調(diào)查結果共分為四個等級:A、非常了解B、比較了解C、基本了解D、不了解.根據(jù)調(diào)查統(tǒng)計結果,繪制了如圖所示的不完整的三種統(tǒng)計圖表.對冬奧會了解程度的統(tǒng)計表對冬奧會的了解程度百分比A非常了解10%B比較了解15%C基本了解35%D不了解n%(1)n=;(2)扇形統(tǒng)計圖中,D部分扇形所對應的圓心角是;(3)請補全條形統(tǒng)計圖;(4)根據(jù)調(diào)查結果,學校準備開展冬奧會的知識競賽,某班要從“非常了解”程度的小明和小剛中選一人參加,現(xiàn)設計了如下游戲來確定誰參賽,具體規(guī)則是:把四個完全相同的乒乓球標上數(shù)字1,2,3,4然后放到一個不透明的袋中,一個人先從袋中摸出一個球,另一人再從剩下的三個球中隨機摸出一個球,若摸出的兩個球上的數(shù)字和為偶數(shù),則小明去,否則小剛去,請用畫樹狀圖或列表的方法說明這個游戲是否公平.19.(5分)如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=0.4m,EF=0.2m,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高.20.(8分)數(shù)學活動小組的小穎、小明和小華利用皮尺和自制的兩個直角三角板測量學校旗桿MN的高度,如示意圖,△ABC和△A′B′C′是他們自制的直角三角板,且△ABC≌△A′B′C′,小穎和小明分別站在旗桿的左右兩側,小穎將△ABC的直角邊AC平行于地面,眼睛通過斜邊AB觀察,一邊觀察一邊走動,使得A、B、M共線,此時,小華測量小穎距離旗桿的距離DN=19米,小明將△A′B′C′的直角邊B′C′平行于地面,眼睛通過斜邊B′A′觀察,一邊觀察一邊走動,使得B′、A′、M共線,此時,小華測量小明距離旗桿的距離EN=5米,經(jīng)測量,小穎和小明的眼睛與地面的距離AD=1米,B′E=1.5米,(他們的眼睛與直角三角板頂點A,B′的距離均忽略不計),且AD、MN、B′E均與地面垂直,請你根據(jù)測量的數(shù)據(jù),計算旗桿MN的高度.21.(10分)“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:接受問卷調(diào)查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為度;請補全條形統(tǒng)計圖;若該中學共有學生900人,請根據(jù)上述調(diào)查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數(shù).22.(10分)在大城市,很多上班族選擇“低碳出行”,電動車和共享單車成為他們的代步工具.某人去距離家8千米的單位上班,騎共享單車雖然比騎電動車多用20分鐘,但卻能強身健體,已知他騎電動車的速度是騎共享單車的1.5倍,求騎共享單車從家到單位上班花費的時間.23.(12分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點A順時針旋轉(zhuǎn)α度(0°≤α≤180°)(1)半圓的直徑落在對角線AC上時,如圖所示,半圓與AB的交點為M,求AM的長;(2)半圓與直線CD相切時,切點為N,與線段AD的交點為P,如圖所示,求劣弧AP的長;(3)在旋轉(zhuǎn)過程中,半圓弧與直線CD只有一個交點時,設此交點與點C的距離為d,直接寫出d的取值范圍.24.(14分)如圖,∠BCD=90°,且BC=DC,直線PQ經(jīng)過點D.設∠PDC=α(45°<α<135°),BA⊥PQ于點A,將射線CA繞點C按逆時針方向旋轉(zhuǎn)90°,與直線PQ交于點E.當α=125°時,∠ABC=°;求證:AC=CE;若△ABC的外心在其內(nèi)部,直接寫出α的取值范圍.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】

絕對值不等的異號加法,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值.互為相反數(shù)的兩個數(shù)相加得1.依此即可求解.【題目詳解】解:?8+3=?2.故選B.【題目點撥】考查了有理數(shù)的加法,在進行有理數(shù)加法運算時,首先判斷兩個加數(shù)的符號:是同號還是異號,是否有1.從而確定用那一條法則.在應用過程中,要牢記“先符號,后絕對值”.2、C【解題分析】

觀察圖象可判斷①②,由圖象所給數(shù)據(jù)可求得小帶、小路兩車離開A城的距離y與時間t的關系式,可求得兩函數(shù)圖象的交點,可判斷③,再令兩函數(shù)解析式的差為50,可求得t,可判斷④,可得出答案.【題目詳解】由圖象可知A,B兩城市之間的距離為300km,小帶行駛的時間為5h,而小路是在小帶出發(fā)1h后出發(fā)的,且用時3h,即比小帶早到1h,∴①②都正確;設小帶車離開A城的距離y與t的關系式為y小帶=kt,把(5,300)代入可求得k=60,∴y小帶=60t,設小路車離開A城的距離y與t的關系式為y小路=mt+n,把(1,0)和(4,300)代入可得解得∴y小路=100t-100,令y小帶=y(tǒng)小路,可得60t=100t-100,解得t=2.5,即小帶和小路兩直線的交點橫坐標為t=2.5,此時小路出發(fā)時間為1.5h,即小路車出發(fā)1.5h后追上甲車,∴③不正確;令|y小帶-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,當100-40t=50時,可解得t=,當100-40t=-50時,可解得t=,又當t=時,y小帶=50,此時小路還沒出發(fā),當t=時,小路到達B城,y小帶=250.綜上可知當t的值為或或或時,兩車相距50km,∴④不正確.故選C.【題目點撥】本題主要考查一次函數(shù)的應用,掌握一次函數(shù)圖象的意義是解題的關鍵,特別注意t是甲車所用的時間.3、D【解題分析】分析:觀察圖形可知,陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC,然后根據(jù)扇形面積公式和三角形面積公式計算即可.詳解:連接CD.∵∠C=90°,AC=2,AB=4,∴BC==2.∴陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC==.故選:D.點睛:本題考查了勾股定理,圓的面積公式,三角形的面積公式及割補法求圖形的面積,根據(jù)圖形判斷出陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC是解答本題的關鍵.4、C【解題分析】

找到只含有一個未知數(shù),未知數(shù)的最高次數(shù)是2,二次項系數(shù)不為0的整式方程的選項即可.【題目詳解】解:A、當a=0時,不是一元二次方程,故本選項錯誤;B、是分式方程,故本選項錯誤;C、化簡得:是一元二次方程,故本選項正確;D、是二元二次方程,故本選項錯誤;故選:C.【題目點撥】本題主要考查一元二次方程,熟練掌握一元二次方程的定義是解題的關鍵.5、D【解題分析】

解:=,∵2<<3,∴在5到6之間.故選D.【題目點撥】此題主要考查了估算無理數(shù)的大小,正確進行計算是解題關鍵.6、B【解題分析】

根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù),進而利用平行線的性質(zhì)得出∠ABC的度數(shù),利用角平分線的定義和三角形內(nèi)角和解答即可.【題目詳解】∵四邊形ABCD內(nèi)接于⊙O,∠A=130°,

∴∠C=180°-130°=50°,

∵AD∥BC,

∴∠ABC=180°-∠A=50°,

∵BD平分∠ABC,

∴∠DBC=25°,

∴∠BDC=180°-25°-50°=105°,

故選:B.【題目點撥】本題考查了圓內(nèi)接四邊形的性質(zhì),關鍵是根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù).7、D【解題分析】∵四邊形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,∵0°<α<45°,∴0<x<1,故選D.【題目點撥】本題主要考查了旋轉(zhuǎn)、相似等知識,解題的關鍵是根據(jù)已知得出△ACG∽△ADH.8、D【解題分析】設拋物線與x軸的兩交點間的橫坐標分別為:x1,x2,

由韋達定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.9、C【解題分析】

根據(jù)中心對稱圖形的概念進行分析.【題目詳解】A、不是中心對稱圖形,故此選項錯誤;

B、不是中心對稱圖形,故此選項錯誤;

C、是中心對稱圖形,故此選項正確;

D、不是中心對稱圖形,故此選項錯誤;

故選:C.【題目點撥】考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.10、A【解題分析】

根據(jù)方程有兩個相等的實數(shù)根結合根的判別式即可得出關于k的方程,解之即可得出結論.【題目詳解】∵方程有兩個相等的實根,∴△=k2-4×2×3=k2-24=0,解得:k=.故選A.【題目點撥】本題考查了根的判別式,熟練掌握“當△=0時,方程有兩個相等的兩個實數(shù)根”是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】

不等式kx+b-(x+a)>0的解集是一次函數(shù)y1=kx+b在y2=x+a的圖象上方的部分對應的x的取值范圍,據(jù)此即可解答.【題目詳解】解:不等式的解集是.故答案為:.【題目點撥】本題考查了一次函數(shù)的圖象與一元一次不等式的關系:從函數(shù)的角度看,就是尋求使一次函數(shù)y=kx+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標所構成的集合.12、或【解題分析】

分兩種情形畫出圖形分別求解即可解決問題【題目詳解】情況1:如圖1中,四邊形DEFG是△ABC的內(nèi)接矩形,設DE=CF=x,則BF=3-x∵EF∥AC,∴=∴=∴EF=(3-x)∴S矩形DEFG=x?(3-x)=﹣(x-)2+3∴x=時,矩形的面積最大,最大值為3,此時對角線=.情況2:如圖2中,四邊形DEFG是△ABC的內(nèi)接矩形,設DE=GF=x,作CH⊥AB于H,交DG于T.則CH=,CT=﹣x,∵DG∥AB,∴△CDG∽△CAB,∴∴∴DG=5﹣x,∴S矩形DEFG=x(5﹣x)=﹣(x﹣)2+3,∴x=時,矩形的面積最大為3,此時對角線==∴矩形面積的最大值為3,此時對角線的長為或故答案為或【題目點撥】本題考查相似三角形的應用、矩形的性質(zhì)、二次函數(shù)的最值等知識,解題的關鍵是學會用分類討論的思想思考問題13、-4【解題分析】:由反比例函數(shù)解析式可知:系數(shù),∵S△AOB=2即,∴;又由雙曲線在二、四象限k<0,∴k=-414、7【解題分析】設樹的高度為m,由相似可得,解得,所以樹的高度為7m15、﹣.【解題分析】試題分析:由根與系數(shù)的關系得:,則,則,∴原式=.點睛:本題主要考查的就是一元二次方程的韋達定理以及規(guī)律的整理,屬于中等題型.解決這個問題的關鍵就是要想到使用韋達定理,然后根據(jù)計算的法則得出規(guī)律,從而達到簡便計算的目的.16、【解題分析】試題分析:根據(jù)圖形分析可得求圖中陰影部分面積實為求扇形部分面積,將原圖陰影部分面積轉(zhuǎn)化為扇形面積求解即可.試題解析:如圖所示:連接BO,CO,∵正六邊形ABCDEF內(nèi)接于⊙O,∴AB=BC=CO=1,∠ABC=110°,△OBC是等邊三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),∴圖中陰影部分面積為:S扇形OBC=.考點:正多邊形和圓.17、9.6×1.【解題分析】

將9600000用科學記數(shù)法表示為9.6×1.故答案為9.6×1.三、解答題(共7小題,滿分69分)18、(1)40;(2)144°;(3)作圖見解析;(4)游戲規(guī)則不公平.【解題分析】

(1)根據(jù)統(tǒng)計圖可以求出這次調(diào)查的n的值;

(2)根據(jù)統(tǒng)計圖可以求得扇形統(tǒng)計圖中D部分扇形所對應的圓心角的度數(shù);

(3)根據(jù)題意可以求得調(diào)查為D的人數(shù),從而可以將條形統(tǒng)計圖補充完整;

(4)根據(jù)題意可以寫出樹狀圖,從而可以解答本題.【題目詳解】解:(1)n%=1﹣10%﹣15%﹣35%=40%,故答案為40;(2)扇形統(tǒng)計圖中D部分扇形所對應的圓心角是:360°×40%=144°,故答案為144°;(3)調(diào)查的結果為D等級的人數(shù)為:400×40%=160,故補全的條形統(tǒng)計圖如右圖所示,(4)由題意可得,樹狀圖如右圖所示,P(奇數(shù))P(偶數(shù))故游戲規(guī)則不公平.【題目點撥】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?9、樹高為5.5米【解題分析】

根據(jù)兩角相等的兩個三角形相似,可得△DEF∽△DCB,利用相似三角形的對邊成比例,可得,代入數(shù)據(jù)計算即得BC的長,由AB=AC+BC,即可求出樹高.【題目詳解】∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴,∵DE=0.4m,EF=0.2m,CD=8m,∴,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米)答:樹高為5.5米.【題目點撥】本題考查了相似三角形的應用,解題的關鍵是從實際問題中整理出相似三角形的模型.20、11米【解題分析】

過點C作CE⊥MN于E,過點C′作C′F⊥MN于F,則EF=B′E?AD=1.5?1=0.5(m),AE=DN=19,B′F=EN=5,根據(jù)相似三角形的性質(zhì)即可得到結論.【題目詳解】解:過點C作CE⊥MN于E,過點C′作C′F⊥MN于F,則EF=B′E?AD=1.5?1=0.5(m),AE=DN=19,B′F=EN=5,∵△ABC≌△A′B′C′,∴∠MAE=∠B′MF,∵∠AEM=∠B′FM=90°,∴△AMF∽△MB′F,∴AEMF∴19MF∴MF=192∵NF=B'E=1.5,MN=MF+NF,∴MN=MF+B'E=19答:旗桿MN的高度約為11米.【題目點撥】本題考查了相似三角形的應用,正確的作出輔助線是解題的關鍵.21、(1)60,90;(2)見解析;(3)300人【解題分析】

(1)由了解很少的有30人,占50%,可求得接受問卷調(diào)查的學生數(shù),繼而求得扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角;(2)由(1)可求得了解的人數(shù),繼而補全條形統(tǒng)計圖;(3)利用樣本估計總體的方法,即可求得答案.【題目詳解】解:(1)∵了解很少的有30人,占50%,∴接受問卷調(diào)查的學生共有:30÷50%=60(人);∴扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為:×360°=90°;故答案為60,90;(2)60﹣15﹣30﹣10=5;補全條形統(tǒng)計圖得:(3)根據(jù)題意得:900×=300(人),則估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數(shù)為300人.【題目點撥】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖,解題的關鍵是熟練的掌握條形統(tǒng)計圖與扇形統(tǒng)計圖的相關知識點.22、騎共享單車從家到單位上班花費的時間是1分鐘.【解題分析】試題分析:設騎共享單車從家到單位上班花費x分鐘,找出題目中的等量關系,列出方程,求解即可.試題解析:設騎共享單車從家到單位上班花費x分鐘,依題意得:解得x=1.經(jīng)檢驗,x=1是原方程的解,且符合題意.答:騎共享單車從家到單位上班花費的時間是1分鐘.23、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解題分析】

(2)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根據(jù)相似三角形的性質(zhì)可求出AM的長度;(2)連接OP、ON,過點O作OG⊥AD于點G,則四邊形DGON為矩形,進而可得出DG、AG的長度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,進而可得出△AOP為等邊三角形,再利用弧長公式即可求出劣弧AP的長;(3)由(2)可知:△AOP為等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OG、DN的長度,進而可得出CN的長度,畫出點B′在直線CD上的圖形,在Rt△AB′D中(點B′在點D左邊),利用勾股定理可求出B′D的長度進而可得出CB′的長度,再結合圖形即可得出:半圓弧與直線CD只有一個交點時d的取值范圍.【題目詳解】(2)在圖2中,連接B′M,則∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;(2)在圖3中,連接OP、O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論