湖南省張家界市永定區(qū)2024屆中考聯(lián)考數(shù)學試題含解析_第1頁
湖南省張家界市永定區(qū)2024屆中考聯(lián)考數(shù)學試題含解析_第2頁
湖南省張家界市永定區(qū)2024屆中考聯(lián)考數(shù)學試題含解析_第3頁
湖南省張家界市永定區(qū)2024屆中考聯(lián)考數(shù)學試題含解析_第4頁
湖南省張家界市永定區(qū)2024屆中考聯(lián)考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省張家界市永定區(qū)2024學年中考聯(lián)考數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知關于x的不等式組至少有兩個整數(shù)解,且存在以3,a,7為邊的三角形,則a的整數(shù)解有()A.4個 B.5個 C.6個 D.7個2.有下列四種說法:①半徑確定了,圓就確定了;②直徑是弦;③弦是直徑;④半圓是弧,但弧不一定是半圓.其中,錯誤的說法有()A.1種 B.2種 C.3種 D.4種3.下列幾何體中三視圖完全相同的是()A. B. C. D.4.如圖,長度為10m的木條,從兩邊各截取長度為xm的木條,若得到的三根木條能組成三角形,則x可以取的值為()A.2m B.m C.3m D.6m5.用五個完全相同的小正方體組成如圖所示的立體圖形,從正面看到的圖形是()A. B. C. D.6.如圖,在?ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,若BG=,則△CEF的面積是()A. B. C. D.7.圖1和圖2中所有的正方形都全等,將圖1的正方形放在圖2中的①②③④某一位置,所組成的圖形不能圍成正方體的位置是()A.① B.② C.③ D.④8.如圖是由幾個相同的小正方體搭成的一個幾何體,它的俯視圖是()A.B.C.D.9.如圖,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α(0°<α<90°).若∠1=112°,則∠α的大小是()A.68° B.20° C.28° D.22°10.在函數(shù)y=中,自變量x的取值范圍是()A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠1二、填空題(共7小題,每小題3分,滿分21分)11.若關于x的二次函數(shù)y=ax2+a2的最小值為4,則a的值為______.12.如圖,設△ABC的兩邊AC與BC之和為a,M是AB的中點,MC=MA=5,則a的取值范圍是_____.13.分解因式:=______.14.一個幾何體的三視圖如左圖所示,則這個幾何體是()A. B. C. D.15.已知:a(a+2)=1,則a2+=_____.16.分解因式___________17.有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;⑤由a2=b2,得a=b.其中正確的是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,連接AD,過D作AC的垂線,交AC邊于點E,交AB邊的延長線于點F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長.19.(5分)如圖,在矩形ABCD中,AB=3,BC=4,將矩形ABCD繞點C按順時針方向旋轉α角,得到矩形A'B'C'D',B'C與AD交于點E,AD的延長線與A'D'交于點F.(1)如圖①,當α=60°時,連接DD',求DD'和A'F的長;(2)如圖②,當矩形A'B'CD'的頂點A'落在CD的延長線上時,求EF的長;(3)如圖③,當AE=EF時,連接AC,CF,求AC?CF的值.20.(8分)在平面直角坐標系xOy中,拋物線y=mx2﹣2mx﹣3(m≠0)與x軸交于A(3,0),B兩點.(1)求拋物線的表達式及點B的坐標;(2)當﹣2<x<3時的函數(shù)圖象記為G,求此時函數(shù)y的取值范圍;(3)在(2)的條件下,將圖象G在x軸上方的部分沿x軸翻折,圖象G的其余部分保持不變,得到一個新圖象M.若經(jīng)過點C(4.2)的直線y=kx+b(k≠0)與圖象M在第三象限內有兩個公共點,結合圖象求b的取值范圍.21.(10分)學生對待學習的態(tài)度一直是教育工作者關注的問題之一.為此,某區(qū)教委對該區(qū)部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調查結果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:此次抽樣調查中,共調查了名學生;將圖①補充完整;求出圖②中C級所占的圓心角的度數(shù).22.(10分)如圖,拋物線y=﹣x2+bx+c與x軸交于A,B兩點(A在B的左側),其中點B(3,0),與y軸交于點C(0,3).(1)求拋物線的解析式;(2)將拋物線向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(包括△OBC的邊界),求h的取值范圍;(3)設點P是拋物線上且在x軸上方的任一點,點Q在直線l:x=﹣3上,△PBQ能否成為以點P為直角頂點的等腰直角三角形?若能,求出符合條件的點P的坐標;若不能,請說明理由.23.(12分)在數(shù)學上,我們把符合一定條件的動點所形成的圖形叫做滿足該條件的點的軌跡.例如:動點P的坐標滿足(m,m﹣1),所有符合該條件的點組成的圖象在平面直角坐標系xOy中就是一次函數(shù)y=x﹣1的圖象.即點P的軌跡就是直線y=x﹣1.(1)若m、n滿足等式mn﹣m=6,則(m,n﹣1)在平面直角坐標系xOy中的軌跡是;(2)若點P(x,y)到點A(0,1)的距離與到直線y=﹣1的距離相等,求點P的軌跡;(3)若拋物線y=上有兩動點M、N滿足MN=a(a為常數(shù),且a≥4),設線段MN的中點為Q,求點Q到x軸的最短距離.24.(14分)兩家超市同時采取通過搖獎返現(xiàn)金搞促銷活動,凡在超市購物滿100元的顧客均可以參加搖獎一次.小明和小華對兩家超市搖獎的50名顧客獲獎情況進行了統(tǒng)計并制成了圖表(如圖)獎金金額獲獎人數(shù)20元15元10元5元商家甲超市5101520乙超市232025(1)在甲超市搖獎的顧客獲得獎金金額的中位數(shù)是,在乙超市搖獎的顧客獲得獎金金額的眾數(shù)是;(2)請你補全統(tǒng)計圖1;(3)請你分別求出在甲、乙兩超市參加搖獎的50名顧客平均獲獎多少元?(4)圖2是甲超市的搖獎轉盤,黃區(qū)20元、紅區(qū)15元、藍區(qū)10元、白區(qū)5元,如果你購物消費了100元后,參加一次搖獎,那么你獲得獎金10元的概率是多少?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】

依據(jù)不等式組至少有兩個整數(shù)解,即可得到a>5,再根據(jù)存在以3,a,7為邊的三角形,可得4<a<10,進而得出a的取值范圍是5<a<10,即可得到a的整數(shù)解有4個.【題目詳解】解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式組至少有兩個整數(shù)解,∴a>5,又∵存在以3,a,7為邊的三角形,∴4<a<10,∴a的取值范圍是5<a<10,∴a的整數(shù)解有4個,故選:A.【題目點撥】此題考查的是一元一次不等式組的解法和三角形的三邊關系的運用,求不等式組的解集應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.2、B【解題分析】

根據(jù)弦的定義、弧的定義、以及確定圓的條件即可解決.【題目詳解】解:圓確定的條件是確定圓心與半徑,是假命題,故此說法錯誤;直徑是弦,直徑是圓內最長的弦,是真命題,故此說法正確;弦是直徑,只有過圓心的弦才是直徑,是假命題,故此說法錯誤;④半圓是弧,但弧不一定是半圓,圓的任意一條直徑的兩個端點把圓分成兩條弧,每一條弧都叫半圓,所以半圓是?。劝雸A大的弧是優(yōu)弧,比半圓小的弧是劣弧,不是所有的弧都是半圓,是真命題,故此說法正確.

其中錯誤說法的是①③兩個.故選B.【題目點撥】本題考查弦與直徑的區(qū)別,弧與半圓的區(qū)別,及確定圓的條件,不要將弦與直徑、弧與半圓混淆.3、A【解題分析】

找到從物體正面、左面和上面看得到的圖形全等的幾何體即可.【題目詳解】解:A、球的三視圖完全相同,都是圓,正確;B、圓柱的俯視圖與主視圖和左視圖不同,錯誤;C、圓錐的俯視圖與主視圖和左視圖不同,錯誤;D、四棱錐的俯視圖與主視圖和左視圖不同,錯誤;故選A.【題目點撥】考查三視圖的有關知識,注意三視圖都相同的常見的幾何體有球和正方體.4、C【解題分析】

依據(jù)題意,三根木條的長度分別為xm,xm,(10-2x)m,在根據(jù)三角形的三邊關系即可判斷.【題目詳解】解:由題意可知,三根木條的長度分別為xm,xm,(10-2x)m,∵三根木條要組成三角形,∴x-x<10-2x<x+x,解得:.故選擇C.【題目點撥】本題主要考察了三角形三邊的關系,關鍵是掌握三角形兩邊之和大于第三邊,兩邊之差的絕對值小于第三邊.5、A【解題分析】從正面看第一層是三個小正方形,第二層左邊一個小正方形,故選:A.6、A【解題分析】

解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足為G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,∴AG==2,∴AE=2AG=4;∴S△ABE=AE?BG=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,則S△CEF=S△ABE=.故選A.【題目點撥】本題考查1.相似三角形的判定與性質;2.平行四邊形的性質,綜合性較強,掌握相關性質定理正確推理論證是解題關鍵.7、A【解題分析】

由平面圖形的折疊及正方體的表面展開圖的特點解題.【題目詳解】將圖1的正方形放在圖2中的①的位置出現(xiàn)重疊的面,所以不能圍成正方體,故選A.【題目點撥】本題考查了展開圖折疊成幾何體,解題時勿忘記四棱柱的特征及正方體展開圖的各種情形.注意:只要有“田”字格的展開圖都不是正方體的表面展開圖.8、D【解題分析】試題分析:俯視圖是從上面看到的圖形.從上面看,左邊和中間都是2個正方形,右上角是1個正方形,故選D.考點:簡單組合體的三視圖9、D【解題分析】試題解析:∵四邊形ABCD為矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故選D.10、C【解題分析】

根據(jù)分式和二次根式有意義的條件進行計算即可.【題目詳解】由題意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范圍是x≥2且x≠2.故選C.【題目點撥】本題考查了函數(shù)自變量的取值范圍問題,掌握分式和二次根式有意義的條件是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解題分析】

根據(jù)二次函數(shù)的性質列出不等式和等式,計算即可.【題目詳解】解:∵關于x的二次函數(shù)y=ax1+a1的最小值為4,

∴a1=4,a>0,

解得,a=1,

故答案為1.【題目點撥】本題考查的是二次函數(shù)的最值問題,掌握二次函數(shù)的性質是解題的關鍵.12、10<a≤10.【解題分析】

根據(jù)題設知三角形ABC是直角三角形,由勾股定理求得AB的長度及由三角形的三邊關系求得a的取值范圍;然后根據(jù)題意列出二元二次方程組,通過方程組求得xy的值,再把該值依據(jù)根與系數(shù)的關系置于一元二次方程z2-az+=0中,最后由根的判別式求得a的取值范圍.【題目詳解】∵M是AB的中點,MC=MA=5,∴△ABC為直角三角形,AB=10;∴a=AC+BC>AB=10;令AC=x、BC=y.∴,∴xy=,∴x、y是一元二次方程z2-az+=0的兩個實根,∴△=a2-4×≥0,即a≤10.綜上所述,a的取值范圍是10<a≤10.故答案為10<a≤10.【題目點撥】本題綜合考查了勾股定理、直角三角形斜邊上的中線及根的判別式.此題的綜合性比較強,解題時,還利用了一元二次方程的根與系數(shù)的關系、根的判別式的知識點.13、x(x+2)(x﹣2).【解題分析】試題分析:==x(x+2)(x﹣2).故答案為x(x+2)(x﹣2).考點:提公因式法與公式法的綜合運用;因式分解.14、A【解題分析】

根據(jù)主視圖和左視圖可知該幾何體是柱體,根據(jù)俯視圖可知該幾何體是豎立的三棱柱.【題目詳解】根據(jù)主視圖和左視圖可知該幾何體是柱體,根據(jù)俯視圖可知該幾何體是豎立的三棱柱.主視圖中間的線是實線.故選A.【題目點撥】考查簡單幾何體的三視圖,掌握常見幾何體的三視圖是解題的關鍵.15、3【解題分析】

先根據(jù)a(a+2)=1得出a2=1-2a,再把a2=1-2a代入a2+進行計算.【題目詳解】a(a+2)=1得出a2=1-2a,a2+1-2a+====3.【題目點撥】本題考查的是代數(shù)式求解,熟練掌握代入法是解題的關鍵.16、【解題分析】

原式提取公因式,再利用完全平方公式分解即可.【題目詳解】原式=2x(y2+2y+1)=2x(y+1)2,故答案為2x(y+1)2【題目點撥】此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.17、①②④【解題分析】①由a=b,得5﹣2a=5﹣2b,根據(jù)等式的性質先將式子兩邊同時乘以-2,再將等式兩邊同時加上5,等式仍成立,所以本選項正確,②由a=b,得ac=bc,根據(jù)等式的性質,等式兩邊同時乘以相同的式子,等式仍成立,所以本選項正確,③由a=b,得,根據(jù)等式的性質,等式兩邊同時除以一個不為0的數(shù)或式子,等式仍成立,因為可能為0,所以本選項不正確,④由,得3a=2b,根據(jù)等式的性質,等式兩邊同時乘以相同的式子6c,等式仍成立,所以本選項正確,⑤因為互為相反數(shù)的平方也相等,由a2=b2,得a=b,或a=-b,所以本選項錯誤,故答案為:①②④.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)2π.【解題分析】

證明:(1)連接OD,∵AB是直徑,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD過O,∴EF是⊙O的切線.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴的長度=.【題目點撥】本題考查了切線的判定和性質:圓的切線垂直于經(jīng)過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了弧長公式.19、(1)DD′=1,A′F=4﹣;(2);(1).【解題分析】

(1)①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉α角,得到矩形A'B'C'D',只要證明△CDD′是等邊三角形即可解決問題;②如圖①中,連接CF,在Rt△CD′F中,求出FD′即可解決問題;(2)由△A′DF∽△A′D′C,可推出DF的長,同理可得△CDE∽△CB′A′,可求出DE的長,即可解決問題;(1)如圖③中,作FG⊥CB′于G,由S△ACF=?AC?CF=?AF?CD,把問題轉化為求AF?CD,只要證明∠ACF=90°,證明△CAD∽△FAC,即可解決問題;【題目詳解】解:(1)①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.∵α=60°,∴∠DCD′=60°,∴△CDD′是等邊三角形,∴DD′=CD=1.②如圖①中,連接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=10°.在Rt△CD′F中,∵tan∠D′CF=,∴D′F=,∴A′F=A′D′﹣D′F=4﹣.(2)如圖②中,在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF∽△A′D′C,∴,∴,∴DF=.同理可得△CDE∽△CB′A′,∴,∴,∴ED=,∴EF=ED+DF=.(1)如圖③中,作FG⊥CB′于G.∵四邊形A′B′CD′是矩形,∴GF=CD′=CD=1.∵S△CEF=?EF?DC=?CE?FG,∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴,∴AC2=AD?AF,∴AF=.∵S△ACF=?AC?CF=?AF?CD,∴AC?CF=AF?CD=.20、(1)拋物線的表達式為y=x2﹣2x﹣2,B點的坐標(﹣1,0);(2)y的取值范圍是﹣3≤y<1.(2)b的取值范圍是﹣<b<.【解題分析】

(1)、將點A坐標代入求出m的值,然后根據(jù)二次函數(shù)的性質求出點B的坐標;(2)、將二次函數(shù)配成頂點式,然后根據(jù)二次函數(shù)的增減性得出y的取值范圍;(2)、根據(jù)函數(shù)經(jīng)過(-1,0)、(3,2)和(0,-2)、(3,2)分別求出兩個一次函數(shù)的解析式,從而得出b的取值范圍.【題目詳解】(1)∵將A(2,0)代入,得m=1,∴拋物線的表達式為y=-2x-2.令-2x-2=0,解得:x=2或x=-1,∴B點的坐標(-1,0).(2)y=-2x-2=-3.∵當-2<x<1時,y隨x增大而減小,當1≤x<2時,y隨x增大而增大,∴當x=1,y最小=-3.又∵當x=-2,y=1,∴y的取值范圍是-3≤y<1.(2)當直線y=kx+b經(jīng)過B(-1,0)和點(3,2)時,解析式為y=x+.當直線y=kx+b經(jīng)過(0,-2)和點(3,2)時,解析式為y=x-2.由函數(shù)圖象可知;b的取值范圍是:-2<b<.【題目點撥】本題主要考查的就是二次函數(shù)的性質、一次函數(shù)的性質以及函數(shù)的交點問題.在解決第二個問題的時候,我們首先必須要明確給出x的取值范圍是否是在對稱軸的一邊還是兩邊,然后根據(jù)函數(shù)圖形進行求解;對于第三問我們必須能夠根據(jù)題意畫出函數(shù)圖象,然后根據(jù)函數(shù)圖象求出取值范圍.在解決二次函數(shù)的題目時,畫圖是非常關鍵的基本功.21、(1)200,(2)圖見試題解析(3)540【解題分析】

試題分析:(1)根據(jù)A級的人數(shù)與所占的百分比列式進行計算即可求出被調查的學生人數(shù);(2)根據(jù)總人數(shù)求出C級的人數(shù),然后補全條形統(tǒng)計圖即可;(3)1減去A、B兩級所占的百分比乘以360°即可得出結論.試題解析::(1)調查的學生人數(shù)為:=200名;(2)C級學生人數(shù)為:200-50-120=30名,補全統(tǒng)計圖如圖;(3)學習態(tài)度達標的人數(shù)為:360×[1-(25%+60%]=54°.答:求出圖②中C級所占的圓心角的度數(shù)為54°.考點:條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用22、(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)【解題分析】

(1)拋物線的對稱軸x=1、B(3,0)、A在B的左側,根據(jù)二次函數(shù)圖象的性質可知A(-1,0);根據(jù)拋物線y=ax2+bx+c過點C(0,3),可知c的值.結合A、B兩點的坐標,利用待定系數(shù)法求出a、b的值,可得拋物線L的表達式;(2)由C、B兩點的坐標,利用待定系數(shù)法可得CB的直線方程.對拋物線配方,還可進一步確定拋物線的頂點坐標;通過分析h為何值時拋物線頂點落在BC上、落在OB上,就能得到拋物線的頂點落在△OBC內(包括△OBC的邊界)時h的取值范圍.(3)設P(m,﹣m2+2m+3),過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,通過證明△BNP≌△PMQ求解即可.【題目詳解】(1)把點B(3,0),點C(0,3)代入拋物線y=﹣x2+bx+c中得:,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即拋物線的對稱軸是:x=1,設原拋物線的頂點為D,∵點B(3,0),點C(0,3).易得BC的解析式為:y=﹣x+3,當x=1時,y=2,如圖1,當拋物線的頂點D(1,2),此時點D在線段BC上,拋物線的解析式為:y=﹣(x﹣1)2+2=﹣x2+2x+1,h=3﹣1=2,當拋物線的頂點D(1,0),此時點D在x軸上,拋物線的解析式為:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,h=3+1=4,∴h的取值范圍是2≤h≤4;(3)設P(m,﹣m2+2m+3),如圖2,△PQB是等腰直角三角形,且PQ=PB,過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,易得△BNP≌△PMQ,∴BN=PM,即﹣m2+2m+3=m+3,解得:m1=0(圖3)或m2=1,∴P(1,4)或(0,3).【題目點撥】本題主要考查了待定系數(shù)法求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論