版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆河北省承德市腰站中學中考數學最后一模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.實數a,b,c在數軸上對應點的位置大致如圖所示,O為原點,則下列關系式正確的是()A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c2.不等式組1-x≤0,3x-6<0A. B. C. D.3.下列圖形是幾家通訊公司的標志,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.4.不等式組中兩個不等式的解集,在數軸上表示正確的是A. B.C. D.5.﹣0.2的相反數是()A.0.2 B.±0.2 C.﹣0.2 D.26.分別寫有數字0,﹣1,﹣2,1,3的五張卡片,除數字不同外其他均相同,從中任抽一張,那么抽到負數的概率是()A. B. C. D.7.已知拋物線y=x2+(2a+1)x+a2﹣a,則拋物線的頂點不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.由五個相同的立方體搭成的幾何體如圖所示,則它的左視圖是()A. B.C. D.9.下列運算中,正確的是()A.(ab2)2=a2b4B.a2+a2=2a4C.a2?a3=a6D.a6÷a3=a210.下表是某校合唱團成員的年齡分布,對于不同的x,下列關于年齡的統(tǒng)計量不會發(fā)生改變的是()年齡/歲13141516頻數515x10-xA.平均數、中位數 B.眾數、方差 C.平均數、方差 D.眾數、中位數二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,矩形ABCD的對角線AC與BD交于點O,過點O作BD的垂線分別交AD,BC于E,F兩點.若AC=,∠AEO=120°,則FC的長度為_____.12.如果當a≠0,b≠0,且a≠b時,將直線y=ax+b和直線y=bx+a稱為一對“對偶直線”,把它們的公共點稱為該對“對偶直線”的“對偶點”,那么請寫出“對偶點”為(1,4)的一對“對偶直線”:______.13.某廣場要做一個由若干盆花組成的形如正六邊形的花壇,每條邊(包括兩個頂點)有n(n>1)盆花,設這個花壇邊上的花盆的總數為S,請觀察圖中的規(guī)律:按上規(guī)律推斷,S與n的關系是________________________________.14.分解因式6xy2-9x2y-y3=_____________.15.為有效開展“陽光體育”活動,某校計劃購買籃球和足球共50個,購買資金不超過3000元.若每個籃球80元,每個足球50元,則籃球最多可購買_____個.16.如圖,將周長為8的△ABC沿BC方向向右平移1個單位得到△DEF,則四邊形ABFD的周長為.三、解答題(共8題,共72分)17.(8分)如圖,AB為⊙O的直徑,點E在⊙O上,C為的中點,過點C作直線CD⊥AE于D,連接AC、BC.(1)試判斷直線CD與⊙O的位置關系,并說明理由;(2)若AD=2,AC=,求AB的長.18.(8分)如圖,四邊形ABCD是邊長為2的正方形,以點A,B,C為圓心作圓,分別交BA,CB,DC的延長線于點E,F,G.(1)求點D沿三條圓弧運動到點G所經過的路線長;(2)判斷線段GB與DF的長度關系,并說明理由.19.(8分)知識改變世界,科技改變生活.導航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學生乘車到黑龍灘(用C表示)開展社會實踐活動,車到達A地后,發(fā)現C地恰好在A地的正北方向,且距離A地13千米,導航顯示車輛應沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達C地,求B、C兩地的距離.(參考數據:sin53°≈,cos53°≈,tan53°≈)20.(8分)如圖,在平面直角坐標系xOy中,函數y=kx(x<0)的圖象經過點A(-1,6),直線y=mx-2與x軸交于點B(①當n=-1時,判斷線段PD與PC的數量關系,并說明理由;②若PD≥2PC,結合函數的圖象,直接寫出n的取值范圍.21.(8分)觀察與思考:閱讀下列材料,并解決后面的問題在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.即:在一個三角形中,各邊和它所對角的正弦的比相等在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結論和有關定理就可以求出其余三個未知元素.根據上述材料,完成下列各題.(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A=;AC=;(2)自從去年日本政府自主自導“釣魚島國有化”鬧劇以來,我國政府靈活應對,現如今已對釣魚島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測得A在我漁政船的北偏西30°的方向上,隨后以40海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得釣魚島A在的北偏西75°的方向上,求此時漁政204船距釣魚島A的距離AB.(結果精確到0.01,≈2.449)22.(10分)在平面直角坐標系xOy中,函數(x>0)的圖象與直線l1:y=x+b交于點A(3,a-2).(1)求a,b的值;(2)直線l2:y=-x+m與x軸交于點B,與直線l1交于點C,若S△ABC≥6,求m的取值范圍.23.(12分)某校為了了解九年級學生體育測試成績情況,以九年(1)班學生的體育測試成績?yōu)闃颖?,按A、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制如下兩幅統(tǒng)計圖,請你結合圖中所給信息解答下列問題:(說明:A級:90分﹣100分;B級:75分﹣89分;C級:60分﹣74分;D級:60分以下)(1)寫出D級學生的人數占全班總人數的百分比為,C級學生所在的扇形圓心角的度數為;(2)該班學生體育測試成績的中位數落在等級內;(3)若該校九年級學生共有500人,請你估計這次考試中A級和B級的學生共有多少人?24.如圖,△ABC中,點D在邊AB上,滿足∠ACD=∠ABC,若AC=,AD=1,求DB的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】
根據數軸上點的位置確定出a,b,c的范圍,判斷即可.【題目詳解】由數軸上點的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故選A.【題目點撥】考查了實數與數軸,弄清數軸上點表示的數是解本題的關鍵.2、D【解題分析】試題分析:1-x≤0①3x-6<0②,由①得:x≥1,由②得:x<2,在數軸上表示不等式的解集是:,故選D.考點:1.在數軸上表示不等式的解集;2.解一元一次不等式組.3、C【解題分析】
根據軸對稱圖形與中心對稱圖形的概念求解.【題目詳解】A.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;B.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;C.是軸對稱圖形,也是中心對稱圖形.故正確;D.不是軸對稱圖形,是中心對稱圖形.故錯誤.故選C.【題目點撥】掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180°后與原圖重合.4、B【解題分析】由①得,x<3,由②得,x≥1,所以不等式組的解集為:1≤x<3,在數軸上表示為:,故選B.5、A【解題分析】
根據相反數的定義進行解答即可.【題目詳解】負數的相反數是它的絕對值,所以﹣0.2的相反數是0.2.故選A.【題目點撥】本題主要考查相反數的定義,熟練掌握這個知識點是解題關鍵.6、B【解題分析】試題分析:根據概率的求法,找準兩點:①全部等可能情況的總數;②符合條件的情況數目;二者的比值就是其發(fā)生的概率.因此,從0,﹣1,﹣2,1,3中任抽一張,那么抽到負數的概率是.故選B.考點:概率.7、D【解題分析】
求得頂點坐標,得出頂點的橫坐標和縱坐標的關系式,即可求得.【題目詳解】拋物線y=x2+(2a+1)x+a2﹣a的頂點的橫坐標為:x=﹣=﹣a﹣,縱坐標為:y==﹣2a﹣,∴拋物線的頂點橫坐標和縱坐標的關系式為:y=2x+,∴拋物線的頂點經過一二三象限,不經過第四象限,故選:D.【題目點撥】本題考查了二次函數的性質,得到頂點的橫縱坐標的關系式是解題的關鍵.8、D【解題分析】
找到從正面看所得到的圖形即可,注意所有看到的棱都應表現在主視圖中.【題目詳解】解:從正面看第一層是二個正方形,第二層是左邊一個正方形.
故選A.【題目點撥】本題考查了簡單組合體的三視圖的知識,解題的關鍵是了解主視圖是由主視方向看到的平面圖形,屬于基礎題,難度不大.9、A【解題分析】
直接利用積的乘方運算法則以及合并同類項法則和同底數冪的乘除運算法則分別分析得出答案.【題目詳解】解:A、(ab2)2=a2b4,故此選項正確;B、a2+a2=2a2,故此選項錯誤;C、a2?a3=a5,故此選項錯誤;D、a6÷a3=a3,故此選項錯誤;故選:A.【題目點撥】此題主要考查了積的乘方運算以及合并同類項和同底數冪的乘除運算,正確掌握運算法則是解題關鍵.10、D【解題分析】
由表易得x+(10-x)=10,所以總人數不變,14歲的人最多,眾數不變,中位數也可以確定.【題目詳解】∵年齡為15歲和16歲的同學人數之和為:x+(10-x)=10,∴由表中數據可知人數最多的是年齡為14歲的,共有15人,合唱團總人數為30人,∴合唱團成員的年齡的中位數是14,眾數也是14,這兩個統(tǒng)計量不會隨著x的變化而變化.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解題分析】
先根據矩形的性質,推理得到OF=CF,再根據Rt△BOF求得OF的長,即可得到CF的長.【題目詳解】解:∵EF⊥BD,∠AEO=120°,
∴∠EDO=30°,∠DEO=60°,
∵四邊形ABCD是矩形,
∴∠OBF=∠OCF=30°,∠BFO=60°,
∴∠FOC=60°-30°=30°,
∴OF=CF,
又∵Rt△BOF中,BO=BD=AC=,
∴OF=tan30°×BO=1,
∴CF=1,
故答案為:1.【題目點撥】本題考查矩形的性質以及解直角三角形的運用,解題關鍵是掌握:矩形的對角線相等且互相平分.12、【解題分析】
把(1,4)代入兩函數表達式可得:a+b=4,再根據“對偶直線”的定義,即可確定a、b的值.【題目詳解】把(1,4)代入得:a+b=4又因為,,且,所以當a=1是b=3所以“對偶點”為(1,4)的一對“對偶直線”可以是:故答案為【題目點撥】此題為新定義題型,關鍵是理解新定義,并按照新定義的要求解答.13、S=1n-1【解題分析】觀察可得,n=2時,S=1;
n=3時,S=1+(3-2)×1=12;
n=4時,S=1+(4-2)×1=18;
…;
所以,S與n的關系是:S=1+(n-2)×1=1n-1.
故答案為S=1n-1.【題目點撥】本題是一道找規(guī)律的題目,這類題型在中考中經常出現.對于找規(guī)律的題目首先應找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.14、-y(3x-y)2【解題分析】
先提公因式-y,然后再利用完全平方公式進行分解即可得.【題目詳解】6xy2-9x2y-y3=-y(9x2-6xy+y2)=-y(3x-y)2,故答案為:-y(3x-y)2.【題目點撥】本題考查了利用提公因式法與公式法分解因式,熟練掌握因式分解的方法及步驟是解題的關鍵.因式分解的一般步驟:一提(公因式),二套(套用公式),注意一定要分解到不能再分解為止.15、1【解題分析】
設購買籃球x個,則購買足球個,根據總價單價購買數量結合購買資金不超過3000元,即可得出關于x的一元一次不等式,解之取其中的最大整數即可.【題目詳解】設購買籃球x個,則購買足球個,根據題意得:,解得:.為整數,最大值為1.故答案為1.【題目點撥】本題考查了一元一次不等式的應用,根據各數量間的關系,正確列出一元一次不等式是解題的關鍵.16、1.【解題分析】試題解析:根據題意,將周長為8的△ABC沿邊BC向右平移1個單位得到△DEF,則AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=1,∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.考點:平移的性質.三、解答題(共8題,共72分)17、(1)證明見解析(2)3【解題分析】
(1)連接,由為的中點,得到,等量代換得到,根據平行線的性質得到,即可得到結論;(2)連接,由勾股定理得到,根據切割線定理得到,根據勾股定理得到,由圓周角定理得到,即可得到結論.【題目詳解】相切,連接,∵為的中點,∴,∵,∴,∴,∴,∵,∴,∴直線與相切;方法:連接,∵,,∵,∴,∵是的切線,∴,∴,∴,∵為的中點,∴,∵為的直徑,∴,∴.方法:∵,易得,∴,∴.【題目點撥】本題考查了直線與圓的位置關系,切線的判定和性質,圓周角定理,勾股定理,平行線的性質,切割線定理,熟練掌握各定理是解題的關鍵.18、(1)6π;(2)GB=DF,理由詳見解析.【解題分析】
(1)根據弧長公式l=nπr180【題目詳解】解:(1)∵AD=2,∠DAE=90°,
∴弧DE的長l1=90×π×2180=π,
同理弧EF的長l2=90×π×4180=2π,弧FG的長l3=90×π×6180=3π,
所以,點D運動到點G所經過的路線長l=l1+l2+l【題目點撥】本題考查弧長公式以及全等三角形的判定和性質,題目比較簡單,解題關鍵掌握是弧長公式.19、(20-5)千米.【解題分析】分析:作BD⊥AC,設AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立關于x的方程,解之求得x的值,最后由BC=可得答案.詳解:過點B作BD⊥AC,依題可得:∠BAD=60°,∠CBE=37°,AC=13(千米),∵BD⊥AC,∴∠ABD=30°,∠CBD=53°,在Rt△ABD中,設AD=x,∴tan∠ABD=即tan30°=,∴BD=x,在Rt△DCB中,∴tan∠CBD=即tan53°=,∴CD=∵CD+AD=AC,∴x+=13,解得,x=∴BD=12-,在Rt△BDC中,∴cos∠CBD=tan60°=,即:BC=(千米),故B、C兩地的距離為(20-5)千米.點睛:此題考查了方向角問題.此題難度適中,解此題的關鍵是將方向角問題轉化為解直角三角形的知識,利用三角函數的知識求解.20、(1)m=-2.(2)①判斷:PD=2PC.理由見解析;②-1≤n<0或n≤-3.【解題分析】
(1)利用代點法可以求出參數k,m;(2)①當n=-1時,即點P的坐標為(-1,2),即可求出點②根據①中的情況,可知n=-1或n=-3再結合圖像可以確定n的取值范圍;【題目詳解】解:(1)∵函數y=kx(x<0)的圖象G∴將點A(-1,6)代入y=∵直線y=mx-2與x軸交于點B(∴將點B(-1,0)代入y=mx-2(2)①判斷:PD=2PC.理由如下:當n=-1時,點P的坐標為(-1∴點C的坐標為(-2,∴PC=1,PD=2.∴PD=2PC.②由①可知當n=-1時PD=2PC所以由圖像可知,當直線y=-2n往下平移的時也符合題意,即0<-2n≤1,得-1≤n<0;當n=-3時,點P的坐標為(∴點C的坐標為(-4,∴PC=1,PD=2∴PD=2PC當-2n≥6時,即n≤-3,也符合題意,所以n的取值范圍為:-1≤n<0或n≤-3.【題目點撥】本題主要考查了反比例函數和一次函數,熟練求反比例函數和一次函數解析式的方法、坐標與線段長度的轉化和數形結合思想是解題關鍵.21、(1)60,20;(2)漁政船距海島A的距離AB約為24.49海里.【解題分析】
(1)利用題目總結的正弦定理,將有關數據代入求解即可;(2)在△ABC中,分別求得BC的長和三個內角的度數,利用題目中總結的正弦定理求AC的長即可.【題目詳解】(1)由正玄定理得:∠A=60°,AC=20;故答案為60°,20;(2)如圖:依題意,得BC=40×0.5=20(海里).∵CD∥BE,∴∠DCB+∠CBE=180°.∵∠DCB=30°,∴∠CBE=150°.∵∠ABE=75°,∴∠ABC=75°,∴∠A=45°.在△ABC中,,即,解得AB=10≈24.49(海里).答:漁政船距海島A的距離AB約為24.49海里.【題目點撥】本題考查了方向角的知識,更重要的是考查了同學們的閱讀理解能力,通過材料總結出學生們沒有接觸的知識,并根據此知識點解決相關的問題,是近幾年中考的高頻考點.22、(1)a=3,b=-2;(2)m≥8或m≤-2【解題分析】
(1)把A點坐標代入反比例解析式確定出a的值,確定出A坐標,代入一次函數解析式求出b的值;(2)分別求出直線l1與x軸交于點D,再求出直線l2與x軸交于點B,從而得出直線l2與直線l1交于點C坐標,分兩種情況進行討論:①當S△ABC=S△BCD+S△ABD=6時,利用三角形的面積求出m的值,②當S△ABC=S△BCD?S△ABD=6時,利用三角形的面積求出m的值,從而得出m的取值范圍.【題目詳解】(1)∵點A在圖象上∴∴a=3∴A(3,1)∵點A在y=x+b圖象上∴1=3+b∴b=-2∴解析式y(tǒng)=x-2(2)設直線y=x-2與x軸的交點為D∴D(2,0)①當點C在點A的上方如圖(1)∵直線y=-x+m與x軸交點為B∴B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 職工戒煙激勵方案
- 溫泉水處理方案
- 發(fā)酵罐驗證方案
- 化學藥品室管理制度
- N-Boc-D-Arg-hydrochloride-N-Boc-D-arginine-hydrochloride-生命科學試劑-MCE
- 藝人合伙合同章程
- 醫(yī)院安檢合同模板
- English listening II(AS3)學習通超星期末考試答案章節(jié)答案2024年
- Mtb-IN-8-生命科學試劑-MCE
- Mitraphylline-Standard-生命科學試劑-MCE
- 2024年人教版七年級上冊英語期中綜合檢測試卷及答案 (一)
- 深圳市中小學生流感疫苗接種知情同意書
- 應用型高校創(chuàng)新創(chuàng)業(yè)教育師資隊伍建設的問題與路徑
- 疝氣教學查房課件
- 唐山港京唐港區(qū)36號至40號煤炭泊位堆場、道路、管網及設備基礎工程施工組織設計1
- 大野耐一的十條訓誡
- 國有企業(yè)改革重組工作實施方案
- 流感樣病例個案調查表(空表).doc
- (完整版)計量裝置改造組織施工設計說明
- 少兒圍棋入門教程(整理版)
- 小學趣味數學校本教材
評論
0/150
提交評論