![2023-2024學(xué)年河北邯鄲數(shù)學(xué)高三第一學(xué)期期末綜合測(cè)試試題含解析_第1頁](http://file4.renrendoc.com/view10/M00/3B/1B/wKhkGWWEUz-ANDbbAAG30bTfeQs299.jpg)
![2023-2024學(xué)年河北邯鄲數(shù)學(xué)高三第一學(xué)期期末綜合測(cè)試試題含解析_第2頁](http://file4.renrendoc.com/view10/M00/3B/1B/wKhkGWWEUz-ANDbbAAG30bTfeQs2992.jpg)
![2023-2024學(xué)年河北邯鄲數(shù)學(xué)高三第一學(xué)期期末綜合測(cè)試試題含解析_第3頁](http://file4.renrendoc.com/view10/M00/3B/1B/wKhkGWWEUz-ANDbbAAG30bTfeQs2993.jpg)
![2023-2024學(xué)年河北邯鄲數(shù)學(xué)高三第一學(xué)期期末綜合測(cè)試試題含解析_第4頁](http://file4.renrendoc.com/view10/M00/3B/1B/wKhkGWWEUz-ANDbbAAG30bTfeQs2994.jpg)
![2023-2024學(xué)年河北邯鄲數(shù)學(xué)高三第一學(xué)期期末綜合測(cè)試試題含解析_第5頁](http://file4.renrendoc.com/view10/M00/3B/1B/wKhkGWWEUz-ANDbbAAG30bTfeQs2995.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年河北邯鄲數(shù)學(xué)高三第一學(xué)期期末綜合測(cè)試試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則下列關(guān)系正確的是()A. B. C. D.2.已知拋物線:的焦點(diǎn)為,過點(diǎn)的直線交拋物線于,兩點(diǎn),其中點(diǎn)在第一象限,若弦的長(zhǎng)為,則()A.2或 B.3或 C.4或 D.5或3.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則4.設(shè)函數(shù)(,)是上的奇函數(shù),若的圖象關(guān)于直線對(duì)稱,且在區(qū)間上是單調(diào)函數(shù),則()A. B. C. D.5.函數(shù)f(x)=的圖象大致為()A. B.C. D.6.已知F為拋物線y2=4x的焦點(diǎn),過點(diǎn)F且斜率為1的直線交拋物線于A,B兩點(diǎn),則||FA|﹣|FB||的值等于()A. B.8 C. D.47.已知拋物線,過拋物線上兩點(diǎn)分別作拋物線的兩條切線為兩切線的交點(diǎn)為坐標(biāo)原點(diǎn)若,則直線與的斜率之積為()A. B. C. D.8.若復(fù)數(shù)滿足,則()A. B. C. D.9.已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時(shí),,則()A.2 B. C.1 D.10.趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個(gè)全等的三角形與中間的一個(gè)小正六邊形組成的一個(gè)大正六邊形,設(shè),若在大正六邊形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正六邊形的概率為()A. B.C. D.11.已知向量,是單位向量,若,則()A. B. C. D.12.設(shè),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正四棱柱的底面邊長(zhǎng)為,側(cè)面的對(duì)角線長(zhǎng)是,則這個(gè)正四棱柱的體積是____.14.設(shè),滿足約束條件,若的最大值是10,則________.15.如圖所示,在△ABC中,AB=AC=2,,,AE的延長(zhǎng)線交BC邊于點(diǎn)F,若,則____.16.設(shè)為拋物線的焦點(diǎn),為上互相不重合的三點(diǎn),且、、成等差數(shù)列,若線段的垂直平分線與軸交于,則的坐標(biāo)為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知多面體中,、均垂直于平面,,,,是的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.18.(12分)在角中,角A、B、C的對(duì)邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長(zhǎng).19.(12分)△的內(nèi)角的對(duì)邊分別為,且.(1)求角的大小(2)若,△的面積,求△的周長(zhǎng).20.(12分)設(shè)直線與拋物線交于兩點(diǎn),與橢圓交于兩點(diǎn),設(shè)直線(為坐標(biāo)原點(diǎn))的斜率分別為,若.(1)證明:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(2)是否存在常數(shù),滿足?并說明理由.21.(12分)已知橢圓的焦距為2,且過點(diǎn).(1)求橢圓的方程;(2)設(shè)為的左焦點(diǎn),點(diǎn)為直線上任意一點(diǎn),過點(diǎn)作的垂線交于兩點(diǎn),(?。┳C明:平分線段(其中為坐標(biāo)原點(diǎn));(ⅱ)當(dāng)取最小值時(shí),求點(diǎn)的坐標(biāo).22.(10分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
首先判斷和1的大小關(guān)系,再由換底公式和對(duì)數(shù)函數(shù)的單調(diào)性判斷的大小即可.【詳解】因?yàn)椋?,,所以,綜上可得.故選:A【點(diǎn)睛】本題考查了換底公式和對(duì)數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.2、C【解析】
先根據(jù)弦長(zhǎng)求出直線的斜率,再利用拋物線定義可求出.【詳解】設(shè)直線的傾斜角為,則,所以,,即,所以直線的方程為.當(dāng)直線的方程為,聯(lián)立,解得和,所以;同理,當(dāng)直線的方程為.,綜上,或.選C.【點(diǎn)睛】本題主要考查直線和拋物線的位置關(guān)系,弦長(zhǎng)問題一般是利用弦長(zhǎng)公式來處理.出現(xiàn)了到焦點(diǎn)的距離時(shí),一般考慮拋物線的定義.3、C【解析】
根據(jù)空間中平行關(guān)系、垂直關(guān)系的相關(guān)判定和性質(zhì)可依次判斷各個(gè)選項(xiàng)得到結(jié)果.【詳解】對(duì)于,若,則可能為平行或異面直線,錯(cuò)誤;對(duì)于,若,則可能為平行、相交或異面直線,錯(cuò)誤;對(duì)于,若,且,由面面垂直的判定定理可知,正確;對(duì)于,若,只有當(dāng)垂直于的交線時(shí)才有,錯(cuò)誤.故選:.【點(diǎn)睛】本題考查空間中線面關(guān)系、面面關(guān)系相關(guān)命題的辨析,關(guān)鍵是熟練掌握空間中的平行關(guān)系與垂直關(guān)系的相關(guān)命題.4、D【解析】
根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對(duì)稱軸及單調(diào)性即可確定的值,進(jìn)而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關(guān)于直線對(duì)稱可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,綜上,則,.故選:D【點(diǎn)睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,由對(duì)稱軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.5、D【解析】
根據(jù)函數(shù)為非偶函數(shù)可排除兩個(gè)選項(xiàng),再根據(jù)特殊值可區(qū)分剩余兩個(gè)選項(xiàng).【詳解】因?yàn)閒(-x)=≠f(x)知f(x)的圖象不關(guān)于y軸對(duì)稱,排除選項(xiàng)B,C.又f(2)==-<0.排除A,故選D.【點(diǎn)睛】本題主要考查了函數(shù)圖象的對(duì)稱性及特值法區(qū)分函數(shù)圖象,屬于中檔題.6、C【解析】
將直線方程代入拋物線方程,根據(jù)根與系數(shù)的關(guān)系和拋物線的定義即可得出的值.【詳解】F(1,0),故直線AB的方程為y=x﹣1,聯(lián)立方程組,可得x2﹣6x+1=0,設(shè)A(x1,y1),B(x2,y2),由根與系數(shù)的關(guān)系可知x1+x2=6,x1x2=1.由拋物線的定義可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故選C.【點(diǎn)睛】本題考查了拋物線的定義,直線與拋物線的位置關(guān)系,屬于中檔題.7、A【解析】
設(shè)出A,B的坐標(biāo),利用導(dǎo)數(shù)求出過A,B的切線的斜率,結(jié)合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【詳解】解:設(shè)A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點(diǎn)睛:(1)本題主要考查拋物線的簡(jiǎn)單幾何性質(zhì),考查直線和拋物線的位置關(guān)系,意在考查學(xué)生對(duì)這些基礎(chǔ)知識(shí)的掌握能力和分析推理能力.(2)解答本題的關(guān)鍵是解題的思路,由于與切線有關(guān),所以一般先設(shè)切點(diǎn),先設(shè)A,B,,再求切線PA,PB方程,求點(diǎn)P坐標(biāo),再根據(jù)得到最后求直線與的斜率之積.如果先設(shè)點(diǎn)P的坐標(biāo),計(jì)算量就大一些.8、B【解析】
由題意得,,求解即可.【詳解】因?yàn)?所以.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.9、D【解析】
說明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結(jié)合奇偶性計(jì)算函數(shù)值.【詳解】由知函數(shù)的周期為4,又是奇函數(shù),,又,∴,∴.故選:D.【點(diǎn)睛】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎(chǔ).10、D【解析】
設(shè),則,小正六邊形的邊長(zhǎng)為,利用余弦定理可得大正六邊形的邊長(zhǎng)為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長(zhǎng)為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長(zhǎng)為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點(diǎn)取自小正六邊形的概率.故選:D.【點(diǎn)睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.11、C【解析】
設(shè),根據(jù)題意求出的值,代入向量夾角公式,即可得答案;【詳解】設(shè),,是單位向量,,,,聯(lián)立方程解得:或當(dāng)時(shí),;當(dāng)時(shí),;綜上所述:.故選:C.【點(diǎn)睛】本題考查向量的模、夾角計(jì)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時(shí)注意的兩種情況.12、C【解析】試題分析:,.故C正確.考點(diǎn):復(fù)合函數(shù)求值.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】Aa設(shè)正四棱柱的高為h得到故得到正四棱柱的體積為故答案為54.14、【解析】
畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合即可容易求得結(jié)果.【詳解】畫出不等式組表示的平面區(qū)域如下所示:目標(biāo)函數(shù)可轉(zhuǎn)化為與直線平行,數(shù)形結(jié)合可知當(dāng)且僅當(dāng)目標(biāo)函數(shù)過點(diǎn),取得最大值,故可得,解得.故答案為:.【點(diǎn)睛】本題考查由目標(biāo)函數(shù)的最值求參數(shù)值,屬基礎(chǔ)題.15、【解析】
過點(diǎn)做,可得,,由可得,可得,代入可得答案.【詳解】解:如圖,過點(diǎn)做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案為:.【點(diǎn)睛】本題主要考查平面向量的線性運(yùn)算和平面向量的數(shù)量積,由題意作出是解題的關(guān)鍵.16、或【解析】
設(shè)出三點(diǎn)的坐標(biāo),結(jié)合等差數(shù)列的性質(zhì)、線段垂直平分線的性質(zhì)、拋物線的定義進(jìn)行求解即可.【詳解】拋物線的準(zhǔn)線方程為:,設(shè),由拋物線的定義可知:,,,因?yàn)椤?、成等差?shù)列,所以有,所以,因?yàn)榫€段的垂直平分線與軸交于,所以,因此有,化簡(jiǎn)整理得:或.若,由可知;,這與已知矛盾,故舍去;若,所以有,因此.故答案為:或【點(diǎn)睛】本題考查了拋物線的定義的應(yīng)用,考查了等差數(shù)列的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)取的中點(diǎn),連接、,推導(dǎo)出四邊形為平行四邊形,可得出,由此能證明平面;(2)由,得平面,則點(diǎn)到平面的距離等于點(diǎn)到平面的距離,在平面內(nèi)過點(diǎn)作于點(diǎn),就是到平面的距離,也就是點(diǎn)到平面的距離,由此能求出直線與平面所成角的正弦值.【詳解】(1)取的中點(diǎn),連接、,、分別為、的中點(diǎn),則且,、均垂直于平面,且,則,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面;(2)由,平面,平面,平面,點(diǎn)到平面的距離等于點(diǎn)到平面的距離,在平面內(nèi)過點(diǎn)作于點(diǎn),平面,平面,,,,平面,即就是到平面的距離,也就是點(diǎn)到平面的距離,設(shè),則到平面的距離,,因此,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明,考查線面角的正弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,是中檔題.18、(1);(2)1.【解析】
(1)由正弦定理化簡(jiǎn)已知等式可得sinAsinB=sinBcosA,求得tanA=,結(jié)合范圍A∈(0,π),可求A=.(2)利用三角形的面積公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周長(zhǎng)的值.【詳解】(1)由題意,在中,因?yàn)椋烧叶ɡ?,可得sinAsinB=sinBcosA,又因?yàn)?,可得sinB≠0,所以sinA=cosA,即:tanA=,因?yàn)锳∈(0,π),所以A=;(2)由(1)可知A=,且a=5,又由△ABC的面積2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以△ABC的周長(zhǎng)a+b+c=5+7=1.【點(diǎn)睛】本題主要考查了正弦定理,三角形的面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.19、(I);(II).【解析】
試題分析:(I)由已知可得;(II)依題意得:的周長(zhǎng)為.試題解析:(I)∵,∴.∴,∴,∴,∴,∴.(II)依題意得:∴,∴,∴,∴,∴的周長(zhǎng)為.考點(diǎn):1、解三角形;2、三角恒等變換.20、(1)證明見解析(0,2);(2)存在,理由見解析【解析】
(1)設(shè)直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過定點(diǎn)(2)由斜率公式分別求出,,聯(lián)立直線與拋物線,橢圓,再由根與系數(shù)的關(guān)系得,,,代入,,化簡(jiǎn)即可求解.【詳解】(1)證明:由題知,直線l的斜率存在且不過原點(diǎn),故設(shè)由可得,.,,故所以直線l的方程為故直線l恒過定點(diǎn).(2)由(1)知設(shè)由可得,,即存在常數(shù)滿足題意.【點(diǎn)睛】本題主要考查了直線與拋物線、橢圓的位置關(guān)系,直線過定點(diǎn)問題,考查學(xué)生分析解決問題的能力,屬于中檔題.21、(1)(2)(?。┮娊馕觯áⅲc(diǎn)的坐標(biāo)為.【解析】
(1)由題意得,再由的關(guān)系求出,即可得橢圓的標(biāo)準(zhǔn)方程;(2)(i)設(shè),的中點(diǎn)為,,設(shè)直線的方程為,代入橢圓方程中,運(yùn)用根與系數(shù)的關(guān)系和中點(diǎn)坐標(biāo)公式,結(jié)合三點(diǎn)共線的方法:斜率相等,即可得證;(ii)利用兩點(diǎn)間的距離公式及弦長(zhǎng)公式將表示出來,由換元法的對(duì)勾函數(shù)的單調(diào)性,可得取最小值時(shí)的條件獲得等量關(guān)系,從而確定點(diǎn)的坐標(biāo).【詳解】解:(1)由題意得,,所以,所以橢圓方程為(2)設(shè),的中點(diǎn)為,(ⅰ)證明:由,可設(shè)直線的方程為,代入橢圓方程,得,所以,所以,則直線的斜率為,因?yàn)?,所以,所以三點(diǎn)共線,所以平分線段;(ii)由兩點(diǎn)間的距離公式得由弦長(zhǎng)公式得所以,令,則,由在上遞增,可得,即時(shí),取得最小值4,所以當(dāng)取最小值時(shí),點(diǎn)的坐標(biāo)為【點(diǎn)睛】此題考那可是橢圓方程和性質(zhì),主要考查橢圓方程的運(yùn)用,運(yùn)用根與系數(shù)的關(guān)系和中點(diǎn)坐標(biāo)公式,同時(shí)考查弦長(zhǎng)公式,屬于較難題.22、(1)證明見解析(2)【解析】
(1)取中點(diǎn)為,連接,,,,根據(jù)線段關(guān)系可證明為等邊三角形,即可得;由為等邊三角形,可得,從而由線面垂直判斷定理可證明平面,即可證明.(2)以為原點(diǎn),,,為,,軸建立空間直角坐標(biāo)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 藝術(shù)畫廊展覽合作協(xié)議
- 游戲軟件發(fā)布及授權(quán)使用合同
- 專業(yè)律師事務(wù)所有償法律咨詢合同
- 2025年錘紋漆合作協(xié)議書
- 房屋裝修半包合同樣本
- 借款抵押車輛合同
- 解決方案研討會(huì)邀請(qǐng)函
- 品牌租賃住宅合同
- 人才服務(wù)協(xié)議書
- 土地儲(chǔ)備與開發(fā)合作協(xié)議
- GB/T 16823.3-2010緊固件扭矩-夾緊力試驗(yàn)
- 建筑工程上人屋面、不上人屋面工程施工方案及工藝方法
- 滅火器每月定期檢查記錄卡表格
- 一次函數(shù)的性質(zhì)說課課件
- 硬筆書法全冊(cè)教案共20課時(shí)
- 航空維修工程管理-第1章課件
- 五年級(jí)上冊(cè)英語Module6Unit1Youcanplaybasketballwell外研社課件
- 工程施工派工單
- 編紙條 市賽獲獎(jiǎng) 完整版課件
- 玩具公司職位說明書匯編
- 平面設(shè)計(jì)創(chuàng)意與制作課件
評(píng)論
0/150
提交評(píng)論