版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年福建省莆田市涵江區(qū)莆田七中高三上數(shù)學(xué)期末質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知中,角、所對的邊分別是,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分必要條件2.已知函數(shù)是上的減函數(shù),當最小時,若函數(shù)恰有兩個零點,則實數(shù)的取值范圍是()A. B.C. D.3.在中,角,,的對邊分別為,,,若,,,則()A. B.3 C. D.44.已知集合,則=()A. B. C. D.5.設(shè),,則“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件6.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.87.已知復(fù)數(shù),則的虛部是()A. B. C. D.18.中心在原點,對稱軸為坐標軸的雙曲線的兩條漸近線與圓都相切,則雙曲線的離心率是()A.2或 B.2或 C.或 D.或9.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統(tǒng)計圖如下面的條形圖.該教師退休后加強了體育鍛煉,目前月退休金的各種用途占比統(tǒng)計圖如下面的折線圖.已知目前的月就醫(yī)費比剛退休時少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元10.如圖,在正方體中,已知、、分別是線段上的點,且.則下列直線與平面平行的是()A. B. C. D.11.如圖,在中,點為線段上靠近點的三等分點,點為線段上靠近點的三等分點,則()A. B. C. D.12.我國古代典籍《周易》用“卦”描述萬物的變化.每一“重卦”由從下到上排列的6個爻組成,爻分為陽爻“——”和陰爻“——”.如圖就是一重卦.在所有重卦中隨機取一重卦,則該重卦至少有2個陽爻的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的一條漸近線方程為,則________.14.已知點為雙曲線的右焦點,兩點在雙曲線上,且關(guān)于原點對稱,若,設(shè),且,則該雙曲線的焦距的取值范圍是________.15.已知函數(shù)若關(guān)于的不等式的解集是,則的值為_____.16.在中,內(nèi)角所對的邊分別為,若,的面積為,則_______,_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知為等差數(shù)列,為等比數(shù)列,的前n項和為,滿足,,,.(1)求數(shù)列和的通項公式;(2)令,數(shù)列的前n項和,求.18.(12分)已知點和橢圓.直線與橢圓交于不同的兩點,.(1)當時,求的面積;(2)設(shè)直線與橢圓的另一個交點為,當為中點時,求的值.19.(12分)如圖,正方體的棱長為2,為棱的中點.(1)面出過點且與直線垂直的平面,標出該平面與正方體各個面的交線(不必說明畫法及理由);(2)求與該平面所成角的正弦值.20.(12分)如圖,在四棱錐中,平面,,為的中點.(1)求證:平面;(2)求二面角的余弦值.21.(12分)已知拋物線的準線過橢圓C:(a>b>0)的左焦點F,且點F到直線l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標準方程;(2)過點F做直線與橢圓C交于A,B兩點,P是AB的中點,線段AB的中垂線交直線l于點Q.若,求直線AB的方程.22.(10分)如圖,在中,,,點在線段上.(1)若,求的長;(2)若,,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由大邊對大角定理結(jié)合充分條件和必要條件的定義判斷即可.【詳解】中,角、所對的邊分別是、,由大邊對大角定理知“”“”,“”“”.因此,“”是“”的充分必要條件.故選:D.【點睛】本題考查充分條件、必要條件的判斷,考查三角形的性質(zhì)等基礎(chǔ)知識,考查邏輯推理能力,是基礎(chǔ)題.2、A【解析】
首先根據(jù)為上的減函數(shù),列出不等式組,求得,所以當最小時,,之后將函數(shù)零點個數(shù)轉(zhuǎn)化為函數(shù)圖象與直線交點的個數(shù)問題,畫出圖形,數(shù)形結(jié)合得到結(jié)果.【詳解】由于為上的減函數(shù),則有,可得,所以當最小時,,函數(shù)恰有兩個零點等價于方程有兩個實根,等價于函數(shù)與的圖像有兩個交點.畫出函數(shù)的簡圖如下,而函數(shù)恒過定點,數(shù)形結(jié)合可得的取值范圍為.故選:A.【點睛】該題考查的是有關(guān)函數(shù)的問題,涉及到的知識點有分段函數(shù)在定義域上單調(diào)減求參數(shù)的取值范圍,根據(jù)函數(shù)零點個數(shù)求參數(shù)的取值范圍,數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題目.3、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。4、D【解析】
先求出集合A,B,再求集合B的補集,然后求【詳解】,所以.故選:D【點睛】此題考查的是集合的并集、補集運算,屬于基礎(chǔ)題.5、A【解析】
根據(jù)對數(shù)的運算分別從充分性和必要性去證明即可.【詳解】若,,則,可得;若,可得,無法得到,所以“”是“”的充分而不必要條件.所以本題答案為A.【點睛】本題考查充要條件的定義,判斷充要條件的方法是:①若為真命題且為假命題,則命題p是命題q的充分不必要條件;②若為假命題且為真命題,則命題p是命題q的必要不充分條件;③若為真命題且為真命題,則命題p是命題q的充要條件;④若為假命題且為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.6、A【解析】
依題意可得,再根據(jù)離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題.7、C【解析】
化簡復(fù)數(shù),分子分母同時乘以,進而求得復(fù)數(shù),再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點睛】本小題主要考查復(fù)數(shù)的乘法、除法運算,考查共軛復(fù)數(shù)的虛部,屬于基礎(chǔ)題.8、A【解析】
根據(jù)題意,由圓的切線求得雙曲線的漸近線的方程,再分焦點在x、y軸上兩種情況討論,進而求得雙曲線的離心率.【詳解】設(shè)雙曲線C的漸近線方程為y=kx,是圓的切線得:,得雙曲線的一條漸近線的方程為∴焦點在x、y軸上兩種情況討論:
①當焦點在x軸上時有:②當焦點在y軸上時有:∴求得雙曲線的離心率2或.
故選:A.【點睛】本小題主要考查直線與圓的位置關(guān)系、雙曲線的簡單性質(zhì)等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想.解題的關(guān)鍵是:由圓的切線求得直線的方程,再由雙曲線中漸近線的方程的關(guān)系建立等式,從而解出雙曲線的離心率的值.此題易忽視兩解得出錯誤答案.9、D【解析】
設(shè)目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結(jié)果即可.【詳解】設(shè)目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.【點睛】本題考查由條形圖和折線圖等基礎(chǔ)知識解決實際問題,屬于基礎(chǔ)題.10、B【解析】
連接,使交于點,連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點,連接、,則為的中點,在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.11、B【解析】
,將,代入化簡即可.【詳解】.故選:B.【點睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運算、數(shù)乘運算,考查學(xué)生的運算能力,是一道中檔題.12、C【解析】
利用組合的方法求所求的事件的對立事件,即該重卦沒有陽爻或只有1個陽爻的概率,再根據(jù)兩對立事件的概率和為1求解即可.【詳解】設(shè)“該重卦至少有2個陽爻”為事件.所有“重卦”共有種;“該重卦至少有2個陽爻”的對立事件是“該重卦沒有陽爻或只有1個陽爻”,其中,沒有陽爻(即6個全部是陰爻)的情況有1種,只有1個陽爻的情況有種,故,所以該重卦至少有2個陽爻的概率是.故選:C【點睛】本題主要考查了對立事件概率和為1的方法求解事件概率的方法.屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)雙曲線的標準方程寫出雙曲線的漸近線方程,結(jié)合題意可求得正實數(shù)的值.【詳解】雙曲線的漸近線方程為,由于該雙曲線的一條漸近線方程為,,解得.故答案為:.【點睛】本題考查利用雙曲線的漸近線方程求參數(shù),考查計算能力,屬于基礎(chǔ)題.14、【解析】
設(shè)雙曲線的左焦點為,連接,由于.所以四邊形為矩形,故,由雙曲線定義可得,再求的值域即可.【詳解】如圖,設(shè)雙曲線的左焦點為,連接,由于.所以四邊形為矩形,故.在中,由雙曲線的定義可得,.故答案為:【點睛】本題考查雙曲線定義及其性質(zhì),涉及到求余弦型函數(shù)的值域,考查學(xué)生的運算能力,是一道中檔題.15、【解析】
根據(jù)題意可知的兩根為,再根據(jù)解集的區(qū)間端點得出參數(shù)的關(guān)系,再求解即可.【詳解】解:因為函數(shù),關(guān)于的不等式的解集是的兩根為:和;所以有:且;且;;故答案為:【點睛】本題主要考查了不等式的解集與參數(shù)之間的關(guān)系,屬于基礎(chǔ)題.16、【解析】
由已知及正弦定理,三角函數(shù)恒等變換的應(yīng)用可得,從而求得,結(jié)合范圍,即可得到答案運用余弦定理和三角形面積公式,結(jié)合完全平方公式,即可得到答案【詳解】由已知及正弦定理可得,可得:解得,即,由面積公式可得:,即由余弦定理可得:即有解得【點睛】本題主要考查了運用正弦定理、余弦定理和面積公式解三角形,題目較為基礎(chǔ),只要按照題意運用公式即可求出答案三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】
(1)設(shè)的公差為,的公比為,由基本量法列式求出后可得通項公式;(2)奇數(shù)項分一組用裂項相消法求和,偶數(shù)項分一組用等比數(shù)列求和公式求和.【詳解】(1)設(shè)的公差為,的公比為,由,.得:,解得,∴,;(2)由,得,為奇數(shù)時,,為偶數(shù)時,,∴.【點睛】本題考查求等差數(shù)列和等比數(shù)列的通項公式,考查分組求和法及裂項相消法、等差數(shù)列與等比數(shù)列的前項和公式,求通項公式采取的是基本量法,即求出公差、公比,由通項公式前項和公式得出相應(yīng)結(jié)論.數(shù)列求和問題,對不是等差數(shù)列或等比數(shù)列的數(shù)列求和,需掌握一些特殊方法:錯位相減法,裂項相消法,分組(并項)求和法,倒序相加法等等.18、(1);(2)或【解析】
(1)聯(lián)立直線的方程和橢圓方程,求得交點的橫坐標,由此求得三角形的面積.(2)法一:根據(jù)的坐標求得的坐標,將的坐標都代入橢圓方程,化簡后求得的坐標,進而求得的值.法二:設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,化簡后寫出根與系數(shù)關(guān)系,結(jié)合求得點的坐標,進而求得的值.【詳解】(1)設(shè),,若,則直線的方程為,由,得,解得,,設(shè)直線與軸交于點,則且.(2)法一:設(shè)點因為,,所以又點,都在橢圓上,所以解得或所以或.法二:設(shè)顯然直線有斜率,設(shè)直線的方程為由,得所以又解得或所以或所以或.【點睛】本小題主要考查直線和橢圓的位置關(guān)系,考查橢圓中三角形面積的求法,考查運算求解能力,屬于中檔題.19、(1)見解析(2).【解析】
(1)與平面垂直,過點作與平面平行的平面即可(2)建立空間直角坐標系求線面角正弦值【詳解】解:(1)截面如下圖所示:其中,,,,分別為邊,,,,的中點,則垂直于平面.(2)建立如圖所示的空間直角坐標系,則,,,,,所以,,.設(shè)平面的一個法向量為,則.不妨取,則,所以與該平面所成角的正弦值為.(若將作為該平面法向量,需證明與該平面垂直)【點睛】考查確定平面的方法以及線面角的求法,中檔題.20、(1)見解析;(2)【解析】
(1)取的中點,連接,根據(jù)中位線的方法證明四邊形是平行四邊形.再證明與從而證明平面,從而得到平面即可.(2)以所在的直線為軸建立空間直角坐標系,再求得平面的法向量與平面的法向量進而求得二面角的余弦值即可.【詳解】(1)證明:如圖,取的中點,連接.又為的中點,則是的中位線.所以且.又且,所以且.所以四邊形是平行四邊形.所以.因為,為的中點,所以.因為,所以.因為平面,所以.又,所以平面.所以.又,所以平面.又,所以平面.(2)易知兩兩互相垂直,所以分別以所在的直線為軸建立如圖所示的空間直角坐標系:因為,所以點.則.設(shè)平面的法向量為,由,得,令,得平面的一個法向量為;顯然平面的一個法向量為;設(shè)二面角的大小為,則.故二面角的余弦值是.【點睛】本題主要考查了線面垂直的證明以及建立空間直角坐標系求解二面角的問題,需要用到線線垂直與線面垂直的轉(zhuǎn)換以及法向量的求法等.屬于中檔題.21、(1);(2)或.【解析】
(1)由拋物線的準線方程求出的值,確定左焦點坐標,再由點F到直線l:的距離為4,求出即可;(2)設(shè)直線方程,與橢圓方程聯(lián)立,運用根與系數(shù)關(guān)系和弦長公式,以及兩直線垂直的條件和中點坐標公式,即可得到所求直線的方程.【詳解】(1)拋物線的準線方程為,,直線,點F到直線l的距離為,,所以橢圓的標準方程為;(2)依題意斜率不為0,又過點,設(shè)方程為,聯(lián)立,消去得,,,設(shè),,,,線段AB的中垂線交直線l于點Q,所以橫坐標為3,,,,平方整理得,解得或(舍去),,所求的直線方程為或
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二年級數(shù)學(xué)計算題專項練習(xí)1000題匯編
- 【初中物理】密度(教學(xué)課件) -2024-2025學(xué)年人教版(2024)八年級物理上冊
- 河南省信陽市普通高中2024-2025學(xué)年高一上學(xué)期期中考試語文試卷(無答案)
- 封塑料用電動裝置包裝用產(chǎn)業(yè)規(guī)劃專項研究報告
- 刮面石收斂劑市場發(fā)展預(yù)測和趨勢分析
- 醫(yī)用踝部支具產(chǎn)業(yè)深度調(diào)研及未來發(fā)展現(xiàn)狀趨勢
- 劃艇產(chǎn)業(yè)規(guī)劃專項研究報告
- 人教版八年級英語上冊 Unit 3 暑假基礎(chǔ)練習(xí)
- 動物用維生素市場需求與消費特點分析
- 衛(wèi)生用消毒劑市場發(fā)展預(yù)測和趨勢分析
- 2023電信網(wǎng)和互聯(lián)網(wǎng)應(yīng)用程序接口數(shù)據(jù)安全技術(shù)要求和測試方法
- 《互聯(lián)網(wǎng)的應(yīng)用》課件
- 娃哈哈CIS案例分析
- 初中九年級美術(shù)期末藝術(shù)測評指標試卷及答案
- 新能源科學(xué)與工程專業(yè)職業(yè)生涯規(guī)劃
- 各單元測試卷(仁愛湘教版初一上)七上試卷
- 1.3地球的圈層結(jié)構(gòu)課件高一地理
- 網(wǎng)絡(luò)安全服務(wù)項目服務(wù)質(zhì)量保障措施(實施方案)
- 高考作文等級評分標準
- 車輛制造工藝學(xué)
- 香料香精概述課件
評論
0/150
提交評論