福建省泉州市德化縣2024屆十校聯(lián)考最后數(shù)學試題含解析_第1頁
福建省泉州市德化縣2024屆十校聯(lián)考最后數(shù)學試題含解析_第2頁
福建省泉州市德化縣2024屆十校聯(lián)考最后數(shù)學試題含解析_第3頁
福建省泉州市德化縣2024屆十校聯(lián)考最后數(shù)學試題含解析_第4頁
福建省泉州市德化縣2024屆十校聯(lián)考最后數(shù)學試題含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省泉州市德化縣2024屆十校聯(lián)考最后數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.小紅上學要經(jīng)過兩個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望上學時經(jīng)過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.2.下列說法:四邊相等的四邊形一定是菱形順次連接矩形各邊中點形成的四邊形一定是正方形對角線相等的四邊形一定是矩形經(jīng)過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分其中正確的有個.A.4 B.3 C.2 D.13.如圖,A、B、C是小正方形的頂點,且每個小正方形的邊長為1,則tan∠BAC的值為()A. B.1 C. D.4.已知圓錐的側面積為10πcm2,側面展開圖的圓心角為36°,則該圓錐的母線長為()A.100cm B.cm C.10cm D.cm5.如圖,⊙O是等邊△ABC的外接圓,其半徑為3,圖中陰影部分的面積是()A.π B. C.2π D.3π6.反比例函數(shù)y=(a>0,a為常數(shù))和y=在第一象限內的圖象如圖所示,點M在y=的圖象上,MC⊥x軸于點C,交y=的圖象于點A;MD⊥y軸于點D,交y=的圖象于點B,當點M在y=的圖象上運動時,以下結論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當點A是MC的中點時,則點B是MD的中點.其中正確結論的個數(shù)是()A.0 B.1 C.2 D.37.如圖,矩形ABCD的對角線AC,BD相交于點O,點M是AB的中點,若OM=4,AB=6,則BD的長為()A.4 B.5 C.8 D.108.如圖,若△ABC內接于半徑為R的⊙O,且∠A=60°,連接OB、OC,則邊BC的長為()A. B. C. D.9.一個不透明的袋子里裝著質地、大小都相同的3個紅球和2個綠球,隨機從中摸出一球,不再放回袋中,充分攪勻后再隨機摸出一球.兩次都摸到紅球的概率是()A. B. C. D.10.甲、乙兩人加工一批零件,甲完成240個零件與乙完成200個零件所用的時間相同,已知甲比乙每天多完成8個零件.設乙每天完成x個零件,依題意下面所列方程正確的是()A. B.C. D.11.如圖所示,從☉O外一點A引圓的切線AB,切點為B,連接AO并延長交圓于點C,連接BC,已知∠A=26°,則∠ACB的度數(shù)為()A.32° B.30° C.26° D.13°12.要使分式有意義,則x的取值范圍是()A.x= B.x> C.x< D.x≠二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,將兩張長為8,寬為2的矩形紙條交叉,使重疊部分是一個菱形,容易知道當兩張紙條垂直時,菱形的周長有最小值8,那么菱形周長的最大值是_________.14.如圖,每個小正方形邊長為1,則△ABC邊AC上的高BD的長為_____.15.如果不等式無解,則a的取值范圍是________16.在平面直角坐標系中,已知,A(2,0),C(0,﹣1),若P為線段OA上一動點,則CP+AP的最小值為_____.17.如圖,AD=DF=FB,DE∥FG∥BC,則SⅠ:SⅡ:SⅢ=________.18.如圖,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分線MN交AC于點D,則∠A的度數(shù)是.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點A(3,1),且過點B(0,﹣2).(1)求反比例函數(shù)和一次函數(shù)的表達式;(2)如果點P是x軸上一點,且△ABP的面積是3,求點P的坐標.20.(6分)如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側)兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).(1)求點B,C的坐標;(2)判斷△CDB的形狀并說明理由;(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關系式,并寫出自變量t的取值范圍.21.(6分)如圖,已知在⊙O中,AB是⊙O的直徑,AC=8,BC=1.求⊙O的面積;若D為⊙O上一點,且△ABD為等腰三角形,求CD的長.22.(8分)某市對城區(qū)部分路段的人行道地磚、綠化帶、排水管等公用設施進行全面更新改造,根據(jù)市政建設的需要,需在35天內完成工程.現(xiàn)有甲、乙兩個工程隊有意承包這項工程,經(jīng)調查知道,乙工程隊單獨完成此項工程的時間是甲工程隊單獨完成此項工程時間的2倍,若甲、乙兩工程隊合作,只需10天完成.甲、乙兩個工程隊單獨完成此項工程各需多少天?若甲工程隊每天的工程費用是4萬元,乙工程隊每天的工程費用是2.5萬元,請你設計一種方案,既能按時完工,又能使工程費用最少.23.(8分)如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4米.(1)求新傳送帶AC的長度;(2)如果需要在貨物著地點C的左側留出2米的通道,試判斷距離B點4米的貨物MNQP是否需要挪走,并說明理由.(說明:⑴⑵的計算結果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.24,≈2.45)24.(10分)如圖1,在Rt△ABC中,∠ABC=90°,BA=BC,直線MN是過點A的直線CD⊥MN于點D,連接BD.(1)觀察猜想張老師在課堂上提出問題:線段DC,AD,BD之間有什么數(shù)量關系.經(jīng)過觀察思考,小明出一種思路:如圖1,過點B作BE⊥BD,交MN于點E,進而得出:DC+AD=BD.(2)探究證明將直線MN繞點A順時針旋轉到圖2的位置寫出此時線段DC,AD,BD之間的數(shù)量關系,并證明(3)拓展延伸在直線MN繞點A旋轉的過程中,當△ABD面積取得最大值時,若CD長為1,請直接寫B(tài)D的長.25.(10分)計算:12+(13)﹣2﹣|1﹣3|﹣(π+1)026.(12分)如圖是根據(jù)對某區(qū)初中三個年級學生課外閱讀的“漫畫叢書”、“科普常識”、“名人傳記”、“其它”中,最喜歡閱讀的一種讀物進行隨機抽樣調查,并繪制了下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖(每人必選一種讀物,并且只能選一種),根據(jù)提供的信息,解答下列問題:(1)求該區(qū)抽樣調查人數(shù);(2)補全條形統(tǒng)計圖,并求出最喜歡“其它”讀物的人數(shù)在扇形統(tǒng)計圖中所占的圓心角度數(shù);(3)若該區(qū)有初中生14400人,估計該區(qū)有初中生最喜歡讀“名人傳記”的學生是多少人?27.(12分)在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)(k≠0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標為(﹣2,3).求一次函數(shù)和反比例函數(shù)解析式.若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.根據(jù)圖象,直接寫出不等式的解集.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】

列舉出所有情況,看每個路口都是綠燈的情況數(shù)占總情況數(shù)的多少即可得.【題目詳解】畫樹狀圖如下,共4種情況,有1種情況每個路口都是綠燈,所以概率為.故選C.2、C【解題分析】

∵四邊相等的四邊形一定是菱形,∴①正確;∵順次連接矩形各邊中點形成的四邊形一定是菱形,∴②錯誤;∵對角線相等的平行四邊形才是矩形,∴③錯誤;∵經(jīng)過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分,∴④正確;其中正確的有2個,故選C.考點:中點四邊形;平行四邊形的性質;菱形的判定;矩形的判定與性質;正方形的判定.3、B【解題分析】

連接BC,由網(wǎng)格求出AB,BC,AC的長,利用勾股定理的逆定理得到△ABC為等腰直角三角形,即可求出所求.【題目詳解】如圖,連接BC,由網(wǎng)格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC為等腰直角三角形,∴∠BAC=45°,則tan∠BAC=1,故選B.【題目點撥】本題考查了銳角三角函數(shù)的定義,解直角三角形,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.4、C【解題分析】

圓錐的側面展開圖是扇形,利用扇形的面積公式可求得圓錐的母線長.【題目詳解】設母線長為R,則圓錐的側面積==10π,∴R=10cm,故選C.【題目點撥】本題考查了圓錐的計算,熟練掌握扇形面積是解題的關鍵.5、D【解題分析】

根據(jù)等邊三角形的性質得到∠A=60°,再利用圓周角定理得到∠BOC=120°,然后根據(jù)扇形的面積公式計算圖中陰影部分的面積即可.【題目詳解】∵△ABC為等邊三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴圖中陰影部分的面積==3π.故選D.【題目點撥】本題考查了三角形的外接圓與外心、圓周角定理及扇形的面積公式,求得∠BOC=120°是解決問題的關鍵.6、D【解題分析】

根據(jù)反比例函數(shù)的性質和比例系數(shù)的幾何意義逐項分析可得出解.【題目詳解】①由于A、B在同一反比例函數(shù)y=圖象上,由反比例系數(shù)的幾何意義可得S△ODB=S△OCA=1,正確;②由于矩形OCMD、△ODB、△OCA為定值,則四邊形MAOB的面積不會發(fā)生變化,正確;③連接OM,點A是MC的中點,則S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面積相等,點B一定是MD的中點.正確;故答案選D.考點:反比例系數(shù)的幾何意義.7、D【解題分析】

利用三角形中位線定理求得AD的長度,然后由勾股定理來求BD的長度.【題目詳解】解:∵矩形ABCD的對角線AC,BD相交于點O,

∴∠BAD=90°,點O是線段BD的中點,

∵點M是AB的中點,

∴OM是△ABD的中位線,

∴AD=2OM=1.

∴在直角△ABD中,由勾股定理知:BD=.

故選:D.【題目點撥】本題考查了三角形中位線定理和矩形的性質,利用三角形中位線定理求得AD的長度是解題的關鍵.8、D【解題分析】

延長BO交圓于D,連接CD,則∠BCD=90°,∠D=∠A=60°;又BD=2R,根據(jù)銳角三角函數(shù)的定義得BC=R.【題目詳解】解:延長BO交⊙O于D,連接CD,則∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故選D.【題目點撥】此題綜合運用了圓周角定理、直角三角形30°角的性質、勾股定理,注意:作直徑構造直角三角形是解決本題的關鍵.9、A【解題分析】

列表或畫樹狀圖得出所有等可能的結果,找出兩次都為紅球的情況數(shù),即可求出所求的概率:【題目詳解】列表如下:

﹣﹣﹣

(紅,紅)

(紅,紅)

(綠,紅)

(綠,綠)

(紅,紅)

﹣﹣﹣

(紅,紅)

(綠,紅)

(綠,紅)

(紅,紅)

(紅,紅)

﹣﹣﹣

(綠,紅)

(綠,紅)

(紅,綠)

(紅,綠)

(紅,綠)

﹣﹣﹣

(綠,綠)

(紅,綠)

(紅,綠)

(紅,綠)

(綠,綠)

﹣﹣﹣

∵所有等可能的情況數(shù)為20種,其中兩次都為紅球的情況有6種,∴,故選A.10、B【解題分析】

根據(jù)題意設出未知數(shù),根據(jù)甲所用的時間=乙所用的時間,用時間列出分式方程即可.【題目詳解】設乙每天完成x個零件,則甲每天完成(x+8)個.即得,,故選B.【題目點撥】找出甲所用的時間=乙所用的時間這個關系式是本題解題的關鍵.11、A【解題分析】

連接OB,根據(jù)切線的性質和直角三角形的兩銳角互余求得∠AOB=64°,再由等腰三角形的性質可得∠C=∠OBC,根據(jù)三角形外角的性質即可求得∠ACB的度數(shù).【題目詳解】連接OB,∵AB與☉O相切于點B,∴∠OBA=90°,∵∠A=26°,∴∠AOB=90°-26°=64°,∵OB=OC,∴∠C=∠OBC,∴∠AOB=∠C+∠OBC=2∠C,∴∠C=32°.故選A.【題目點撥】本題考查了切線的性質,利用切線的性質,結合三角形外角的性質求出角的度數(shù)是解決本題的關鍵.12、D【解題分析】

本題主要考查分式有意義的條件:分母不能為0,即3x?7≠0,解得x.【題目詳解】∵3x?7≠0,∴x≠.故選D.【題目點撥】本題考查的是分式有意義的條件:當分母不為0時,分式有意義.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解題分析】

畫出圖形,設菱形的邊長為x,根據(jù)勾股定理求出周長即可.【題目詳解】當兩張紙條如圖所示放置時,菱形周長最大,設這時菱形的邊長為xcm,

在Rt△ABC中,

由勾股定理:x2=(8-x)2+22,

解得:x=,∴4x=1,

即菱形的最大周長為1cm.

故答案是:1.【題目點撥】解答關鍵是怎樣放置紙條使得到的菱形的周長最大,然后根據(jù)圖形列方程.14、【解題分析】試題分析:根據(jù)網(wǎng)格,利用勾股定理求出AC的長,AB的長,以及AB邊上的高,利用三角形面積公式求出三角形ABC面積,而三角形ABC面積可以由AC與BD乘積的一半來求,利用面積法即可求出BD的長:根據(jù)勾股定理得:,由網(wǎng)格得:S△ABC=×2×4=4,且S△ABC=AC?BD=×5BD,∴×5BD=4,解得:BD=.考點:1.網(wǎng)格型問題;2.勾股定理;3.三角形的面積.15、a≥1【解題分析】

將不等式組解出來,根據(jù)不等式組無解,求出a的取值范圍.【題目詳解】解得,∵無解,∴a≥1.故答案為a≥1.【題目點撥】本題考查了解一元一次不等式組,解題的關鍵是熟練的掌握解一元一次不等式組的運算法則.16、【解題分析】

可以取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,根據(jù)勾股定理可得AD=3,證明△APM∽△ADO得,PM=AP.當CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.【題目詳解】如圖,取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴當CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值為.故答案為:.【題目點撥】此題考查勾股定理,三角形相似的判定及性質,最短路徑問題,如何找到AP的等量線段與線段CP相加是解題的關鍵,由此利用勾股定理、相似三角形做輔助線得到垂線段PM,使問題得解.17、1:3:5【解題分析】∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD=DF=FB,∴AD:AF:AB=1:2:3,∴=1:4:9,∴SⅠ:SⅡ:SⅢ=1:3:5.故答案為1:3:5.點睛:本題考查了平行線的性質及相似三角形的性質.相似三角形的面積比等于相似比的平方.18、50°.【解題分析】

根據(jù)線段垂直平分線上的點到兩端點的距離相等可得AD=BD,根據(jù)等邊對等角可得∠A=∠ABD,然后表示出∠ABC,再根據(jù)等腰三角形兩底角相等可得∠C=∠ABC,然后根據(jù)三角形的內角和定理列出方程求解即可:【題目詳解】∵MN是AB的垂直平分線,∴AD="BD."∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案為50°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=;y=x-2;(2)(0,0)或(4,0)【解題分析】試題分析:(1)利用待定系數(shù)法即可求得函數(shù)的解析式;(2)首先求得AB與x軸的交點,設交點是C,然后根據(jù)S△ABP=S△ACP+S△BCP即可列方程求得P的橫坐標.試題解析:(1)∵反比例函數(shù)y=(m≠0)的圖象過點A(1,1),∴1=∴m=1.∴反比例函數(shù)的表達式為y=.∵一次函數(shù)y=kx+b的圖象過點A(1,1)和B(0,-2).∴,解得:,∴一次函數(shù)的表達式為y=x-2;(2)令y=0,∴x-2=0,x=2,∴一次函數(shù)y=x-2的圖象與x軸的交點C的坐標為(2,0).∵S△ABP=1,PC×1+PC×2=1.∴PC=2,∴點P的坐標為(0,0)、(4,0).【題目點撥】本題考查了待定系數(shù)法求函數(shù)的解析式以及三角形的面積的計算,正確根據(jù)S△ABP=S△ACP+S△BCP列方程是關鍵.20、(Ⅰ)B(3,0);C(0,3);(Ⅱ)為直角三角形;(Ⅲ).【解題分析】

(1)首先用待定系數(shù)法求出拋物線的解析式,然后進一步確定點B,C的坐標.(2)分別求出△CDB三邊的長度,利用勾股定理的逆定理判定△CDB為直角三角形.(3)△COB沿x軸向右平移過程中,分兩個階段:①當0<t≤時,如答圖2所示,此時重疊部分為一個四邊形;②當<t<3時,如答圖3所示,此時重疊部分為一個三角形.【題目詳解】解:(Ⅰ)∵點在拋物線上,∴,得∴拋物線解析式為:,令,得,∴;令,得或,∴.(Ⅱ)為直角三角形.理由如下:由拋物線解析式,得頂點的坐標為.如答圖1所示,過點作軸于點M,則,,.過點作于點,則,.在中,由勾股定理得:;在中,由勾股定理得:;在中,由勾股定理得:.∵,∴為直角三角形.(Ⅲ)設直線的解析式為,∵,∴,解得,∴,直線是直線向右平移個單位得到,∴直線的解析式為:;設直線的解析式為,∵,∴,解得:,∴.連續(xù)并延長,射線交交于,則.在向右平移的過程中:(1)當時,如答圖2所示:設與交于點,可得,.設與的交點為,則:.解得,∴..(2)當時,如答圖3所示:設分別與交于點、點.∵,∴,.直線解析式為,令,得,∴..綜上所述,與的函數(shù)關系式為:.21、(1)25π;(2)CD1=,CD2=7【解題分析】分析:(1)利用圓周角定理的推論得到∠C是直角,利用勾股定理求出直徑AB,再利用圓的面積公式即可得到答案;(2)分點D在上半圓中點與點D在下半圓中點這兩種情況進行計算即可.詳解:(1)∵AB是⊙O的直徑,∴∠ACB=90°,∵AB是⊙O的直徑,∴AC=8,BC=1,∴AB=10,∴⊙O的面積=π×52=25π.(2)有兩種情況:①如圖所示,當點D位于上半圓中點D1時,可知△ABD1是等腰直角三角形,且OD1⊥AB,作CE⊥AB垂足為E,CF⊥OD1垂足為F,可得矩形CEOF,∵CE=,∴OF=CE=,∴,∵=,∴,∴,∴;②如圖所示,當點D位于下半圓中點D2時,同理可求.∴CD1=,CD2=7點睛:本題考查了圓周角定理的推論、勾股定理、矩形的性質等知識.利用分類討論思想并合理構造輔助線是解題的關鍵.22、(1)甲工程隊單獨完成該工程需15天,則乙工程隊單獨完成該工程需30天;(2)應該選擇甲工程隊承包該項工程.【解題分析】

(1)設甲工程隊單獨完成該工程需x天,則乙工程隊單獨完成該工程需2x天.再根據(jù)“甲、乙兩隊合作完成工程需要10天”,列出方程解決問題;

(2)首先根據(jù)(1)中的結果,從而可知符合要求的施工方案有三種:方案一:由甲工程隊單獨完成;方案二:由乙工程隊單獨完成;方案三:由甲乙兩隊合作完成.針對每一種情況,分別計算出所需的工程費用.【題目詳解】(1)設甲工程隊單獨完成該工程需天,則乙工程隊單獨完成該工程需天.根據(jù)題意得:方程兩邊同乘以,得解得:經(jīng)檢驗,是原方程的解.∴當時,.答:甲工程隊單獨完成該工程需15天,則乙工程隊單獨完成該工程需30天.(2)因為甲乙兩工程隊均能在規(guī)定的35天內單獨完成,所以有如下三種方案:方案一:由甲工程隊單獨完成.所需費用為:(萬元);方案二:由乙工程隊單獨完成.所需費用為:(萬元);方案三:由甲乙兩隊合作完成.所需費用為:(萬元).∵∴應該選擇甲工程隊承包該項工程.【題目點撥】本題考查分式方程在工程問題中的應用.分析題意,找到關鍵描述語,找到合適的等量關系是解決問題的關鍵.23、(1)5.6(2)貨物MNQP應挪走,理由見解析.【解題分析】

(1)如圖,作AD⊥BC于點DRt△ABD中,AD=ABsin45°=4在Rt△ACD中,∵∠ACD=30°∴AC=2AD=4即新傳送帶AC的長度約為5.6米.(2)結論:貨物MNQP應挪走.在Rt△ABD中,BD=ABcos45°=4在Rt△ACD中,CD=ACcos30°=∴CB=CD—BD=∵PC=PB—CB≈4—2.1=1.9<2∴貨物MNQP應挪走.24、(1);(2)AD﹣DC=BD;(3)BD=AD=+1.【解題分析】

(1)根據(jù)全等三角形的性質求出DC,AD,BD之間的數(shù)量關系(2)過點B作BE⊥BD,交MN于點E.AD交BC于O,證明,得到,,根據(jù)為等腰直角三角形,得到,再根據(jù),即可解出答案.(3)根據(jù)A、B、C、D四點共圓,得到當點D在線段AB的垂直平分線上且在AB的右側時,△ABD的面積最大.在DA上截取一點H,使得CD=DH=1,則易證,由即可得出答案.【題目詳解】解:(1)如圖1中,由題意:,∴AE=CD,BE=BD,∴CD+AD=AD+AE=DE,∵是等腰直角三角形,∴DE=BD,∴DC+AD=BD,故答案為.(2).證明:如圖,過點B作BE⊥BD,交MN于點E.AD交BC于O.∵,∴,∴.∵,,,∴,∴.又∵,∴,∴,,∴為等腰直角三角形,.∵,∴.(3)如圖3中,易知A、B、C、D四點共圓,當點D在線段AB的垂直平分線上且在AB的右側時,△ABD的面積最大.此時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論