IRENA-國(guó)際貿(mào)易和綠色氫:支持全球向低碳經(jīng)濟(jì)轉(zhuǎn)型_第1頁(yè)
IRENA-國(guó)際貿(mào)易和綠色氫:支持全球向低碳經(jīng)濟(jì)轉(zhuǎn)型_第2頁(yè)
IRENA-國(guó)際貿(mào)易和綠色氫:支持全球向低碳經(jīng)濟(jì)轉(zhuǎn)型_第3頁(yè)
IRENA-國(guó)際貿(mào)易和綠色氫:支持全球向低碳經(jīng)濟(jì)轉(zhuǎn)型_第4頁(yè)
IRENA-國(guó)際貿(mào)易和綠色氫:支持全球向低碳經(jīng)濟(jì)轉(zhuǎn)型_第5頁(yè)
已閱讀5頁(yè),還剩112頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Internationaltradeandgreenhydrogen

Supportingtheglobaltransitiontoalow-carboneconomy

DISCLAIMER

Thispublicationandthematerialhereinhavebeenpreparedunder

theresponsibilityoftheWTOSecretariatandoftheInternational

RenewableEnergyAgencyandareprovided“asis”.Allreasonable

precautionshavebeentakenbytheWTOandIRENAtoverifythe

reliabilityofthematerialinthispublication.However,neitherthe

WTOnorIRENA,noranyoftheirofficials,agents,dataorother

third-partycontentprovidersprovidesawarrantyofanykind,

eitherexpressedorimplied,andtheyacceptnoresponsibilityor

liabilityforanyconsequenceofuseofthepublicationormaterial

herein.

Theinformationcontainedhereindoesnotnecessarilyreflect

thepositionsoropinionsofWTOmembers,norofthemembers

ofIRENA.Itiswithoutprejudicetotherightsandobligations

ofWTOmembersundertheWTOagreements.Theopinions

expressedandargumentsemployedarenotintendedtoprovide

anyauthoritativeorlegalinterpretationofprovisionsoftheWTO

agreements,andshallinnowaybereadorunderstoodtohave

anylegalimplications.

Thementionofspecificcompaniesorcertainprojectsorproducts

doesnotimplythattheyareendorsedorrecommendedby

eithertheWTOorIRENAinpreferencetoothersofasimilar

naturethatarenotmentioned.Thedesignationsemployedand

thepresentationofmaterialhereindonotimplytheexpression

ofanyopiniononthepartoftheWTOorIRENAconcerning

thelegalstatusofanyregion,country,territory,cityorareaor

ofitsauthorities,orconcerningthedelimitationoffrontiersor

boundaries.

INTERNATIONALTRADEANDGREENHYDROGEN?1

Contents

AcknowledgementsandAbbreviations2

ExecutivesummaryandFiveactionsforconsiderationbypolicymakers

3

1

Introduction

6

1.1

Theroleofgreenhydrogeninagloballow-carboneconomy

7

1.2

Prospectsforgreenhydrogenproduction

10

1.3

Howcouldglobalhydrogentradeplayoutinthefuture

13

2

Mappingsupplychainissuesfromatradeperspective

16

2.1

Tradeinhydrogenandhydrogenderivatives

20

2.2

Electrolysersasakeytechnologyforthegreenhydrogensupplychain

24

3

Trade-relatedpoliciesalongthehydrogenvaluechain

26

3.1

Tariffsandothertaxes

29

3.2

Qualityinfrastructure–standards,certificationandbeyond

30

3.3

Subsidies

34

3.4

Sustainablegovernmentprocurement

37

4

Considerationsfordevelopment

40

5

Theroleofinternationalcooperation

44

Fiveactionsforconsiderationbypolicymakers

48

Annex

51

Bibliography

54

INTERNATIONALTRADEANDGREENHYDROGEN?3

EXECUTIVESUMMARY

Theroleofgreenhydrogentradeinthetransitiontoalow-carboneconomy

Greenhydrogen,produced

exclusivelyfromrenewableenergy,israpidlygainingimportanceasa

potentialfactorinthetransitionto

anet-zeroglobaleconomy.Itoffersasolutiontodecarbonizeenergy

applicationswherethedirectuseofrenewableelectricityorfuelsisnotatechnicallyviableor

cost-effectivesolution,suchasheavyindustry,shipping,aviationand

seasonalenergystorage.

Greenhydrogencouldplayakeyroleinachievingthegoalsofthe

ParisAgreement1bymid-century,i.e.,topursueeffortstolimitthe

increaseintheglobalaverage

temperatureto1.5°C,andtowellbelow2°C,abovepre-industrial

levels.Hydrogenproductionis

currentlyamajornetcontributor

toclimatechange,ratherthanto

decarbonization,becausecurrentmethodsofproducinghydrogen

arecarbon-intensive.Thus,toarriveatanet-zeroworld,thelandscapeofhydrogenproductionand

consumptionwillneedtochangedramatically.

ToachievethegoalsoftheParis

Agreement,thecurrentusesservedbyhydrogen(e.g.,toproduce

fertilizersorotherchemicals)willneedtobesuppliedbyclean

hydrogen.Inaddition,thesupplyofhydrogenoverallwillneedto

expandmorethanfive-foldby

2050,tomorethan500MT/y,ifitistoserveabroaderrangeofusesanddecarbonizecarbon-intensivesectors.Giventhatrenewable

electricityisnecessarytoproducegreenhydrogen,deliveringonsuchascenariowill,inparallel,requireamassiveexpansioninrenewablepowergeneration.

TheInternationalRenewableEnergyAgency(IRENA)estimatesthat

theglobaltechnicalpotentialto

producegreenhydrogenisas

muchastwentytimeswhatthe

totalglobalprimaryenergydemandwillbein2050.Accesstohigh-

qualityabundantrenewablepowergenerationwillbeacrucialcost

factor,asthiswillbeakeydriveroftherelativecompetitiveness

ofcertainregionsinproducing

hydrogenorinproducingtradablecommoditiesusinghydrogen.

Greenhydrogenandderivative

commodities,suchasgreen

ammonia,makeitpossibleto

producerenewableenergyinareaswithsubstantialrenewableenergypotential,andtotransportitto

regionswithsignificanthydrogendemandbutaninsufficientormorecostlyrenewableenergysupply.

Internationaltradecouldplaya

significantroleinmatchingsupply

anddemandforgreenhydrogenanditsderivatives,becausethedomesticproductionpotentialofsome

economiesandregionsmaynot

beenoughtosatisfytheirdomesticdemand,anditmaybecheaperforsomeeconomiestoimportgreen

hydrogenfromlocationswithlowerproductioncosts.AnalysisbyIRENAsuggeststhatby2050aboutone

quarterofthetotalglobalhydrogen

demandcouldbesatisfiedthrough

internationaltrade.

Currentlyhydrogenislargely

producedusingnaturalgas,with

tradeflowsintheorderof

US$150-200millionperyear.The

tradeofcommoditiesthatcanbe

derivedfrom(green)hydrogen,

notablyammoniaandmethanol

–ismoresignificant.Thesewere

respectivelyworthUS$17.5billion

andUS$14.1billionin2022.

Thetradedynamicsforgreen

hydrogenandderivativesina

net-zeroscenariowillbevery

differentfromthoseoftoday’s

internationalfossilfuelmarkets.The

geographicaldistributionofgreen

hydrogenproductionpotentialis

widespread–asitislinkedtosolar

andwindpowersupply–andthere

arefewmajorpotentialimporters.

Bycontrast,intoday’soilandgasmarkets,ahandfulofplayerscontrolalargeproportionoftheglobal

supply,foramuchlargernumberof

importers.

Thephysicalcharacteristicsof

hydrogenrenderittechnicallydifficultandeconomicallycostlytotransportoverlongdistances.

Greenhydrogencould

playakeyroleinachievingthegoalsoftheParis

Agreementbymid-century.

Forthisreason,greenhydrogen

tradewilllikelymaterializetoagreatextentastradeincommodities

producedthroughtheuseof

hydrogen,suchasammonia,

methanol,syntheticfuelsoriron.Theprospectofcost-competitivegreenhydrogenproductioninregionswithabundant,high-qualityrenewable

energycouldpotentiallydrivethe

relocationofsomeenergy-intensiveindustriesandtheemergenceof

newcommoditytradeflows.

Aswellasincreasingtrade

ofhydrogenanditsderivative

commodities,scalingupgreen

hydrogenforthepurposeof

decarbonizationwillresultina

significantincreaseintradeflowsofthetechnologiesandservicesrequiredforitsproduction,suchaselectrolysers(whichuseelectricitytosplitwaterintohydrogenand

oxygen),compressors,pipesandvalves.

Atpresent,morethan30

economiesaroundtheglobealreadyhavenationalstrategiesforlow-

carbonhydrogen.Therefore,itis

alreadycriticaltobeginanticipatingtheenablingconditionstofacilitatethistrade,intermsofinfrastructuredevelopment,marketdesignandregulations,andconducivetradepolicies.

Anumberofpathwayscouldhelp

torendertradepoliciesmoreopen,predictable,coherentandinclusive,toadvancetheirroleinfosteringandshapingthedevelopmentofgreenhydrogensupplychains.

Thisreportoutlinesfiveactionsforconsiderationbypolicymakers:

1.Addressingtradebarriers

alongthegreenhydrogen

supplychaintopromote

thedevelopmentofgreenhydrogenbyloweringcostsandfosteringtechnology

access.

2.Developingsoundquality

infrastructuretoguarantee

theenvironmentalintegrityofgreenhydrogenproductionandprovideinformationontheproductionprocessandemissionsfootprintalongthevaluechain.

3.Implementingsupportpoliciestohelpsustainmarketgrowth,promotecostefficienciesandnarrowthecostdifferential

betweentheproductioncostsofgreenandoffossil-basedhydrogen.

4.Usingsustainablegovernmentprocurementtofosteralargeandstabledemandforgreenhydrogen,itsderivativesandrelatedtechnologies.

5.Increasinginternational

cooperationinsupportofgreenhydrogentradetoensure

alignmentandconsistencyindefinitionsandstandardsforemissionscertificationschemesandcontributetobringingaboutsocialandeconomicbenefits.

Internationaltradecould

playasignificantrolein

matchingsupplyand

demandforgreenhydrogen anditsderivatives.

Endnotes

1See

/en/climatechange/paris-agreement

.

INTERNATIONALTRADEANDGREENHYDROGEN?5

FIVEACTIONSFORCONSIDERATION

BYPOLICYMAKERS

Asetoffiveactionsforeconomiestoconsiderinordertoscale

upandfacilitateglobaltrade

ofgreenhydrogen.

?Adoptnationalmeasuresbasedon

internationalstandardsandengageininternationalstandardization.

?Fosterinternationaldialogueoncarbonmeasurementmethodologies,definitionsoflow-carbonhydrogenandverificationprocedures.

?Informcustomersvialabellingrequirementsbasedonqualityinfrastructure.

?Implementsustainablegovernmentprocurementpoliciesbypurchasinglow-carbongoodsandservicesandstimulatinginnovativesolutions.

?Considercoordinateddemand-creatingpoliciesandcollaborationtoachieve

economiesofscaleandacceleratecostreductions.

1.Addresstrade

barriersalong

thegreenhydrogen

supplychain

2.Developsound

qualityinfrastructure

forgreenhydrogen

trade

3.Implementsupport

policiesforgreen

hydrogen

4.Usesustainable

government

procurementto

fostergreen

hydrogendemand

5.Increase

international

cooperationongreen

hydrogentrade

?Promotetradeingoodsandservices

relatedtorenewableenergyproduction.

?Reducetariffsandnon-tariffbarrierson

greenhydrogen,electrolysers,derivativesandotherproductsalongthesupplychain.

?Implementtargetedandnon-discriminatoryenvironmentalsubsidiestohelpsustain

growthinelectrolysercapacityandgreenhydrogenproduction.

?Closetheeconomicgapbetweenfossilfuelsandgreenhydrogenbyphasingoutfossilfuelsubsidies.

?Encouragetechnologydevelopmentandinnovationthroughdialogue.

?Engageincooperationforaongreenhydrogen.

?Increasetechnicalassistanceandcapacity-building.

?SupporttheneedsofdevelopingeconomiesthroughAidforTrade.

1INTRODUCTION

INTERNATIONALTRADEANDGREENHYDROGEN?7

1.1Theroleofgreenhydrogeninagloballow-carboneconomy

TomeetthegoalsoftheParis

Agreementbymid-century,the

globalenergysystemwillneedtobedeeplytransformedwithinthenext

twoandahalfdecades.Accordingtothescenarioproposedinthe

InternationalRenewableEnergy

Agency’s(IRENA)WorldEnergy

TransitionsOutlook2023:1.5°C

Pathway(IRENA,2023a),more

thantwo-thirdsofthecarbondioxide(CO2)emissionreductionstowardsanet-zeroenergysystemcanbe

achievedthroughanincreased

supplyofrenewableenergy,the

electrificationofenergyservices

currentlysuppliedwithfossilfuels,

andtheimprovementofenergy

efficiency.Inthisscenariofora

decarbonizedworld,electricitywouldbecomethecentralenergycarrier,

accountingformorethanhalfoftheworlds’finalenergyconsumption,upfromaboutonefifthtoday.

However,notallenergyusescan

beelectrified.Insomecases,a

renewablemoleculeisneeded

aspartoftheprocess,eitheras

feedstock–suchashydrogen

forammoniaproduction–orasa

chemicalagent–suchashydrogenforprimarysteelproduction.In

othercases,electrificationisnot

technicallyfeasibleatpresentduetotheenergydensityrequirementsofthefuel,suchasintheaviationandshippingsectors.Therefore,there

isaneedforsolutionstoclosethedecarbonizationgapforapplicationsinwhichthedirectuseofrenewableelectricityorfuelsisnotatechnicallyviableorcost-effectivesolution.

Renewable–green–hydrogencanactasthelinkbetweenrenewableelectricitygenerationandhard-to-abate(i.e.,forwhichthetransitiontonetzeroisdifficulteitherintermsoftechnologyorcost)sectors

14%

Hydrogenanditsderivativescouldsatisfy14%offinalenergydemandin2050.

orapplications(IRENA,2022a).

Renewableelectricitycanbe

convertedtogreenhydrogenvia

electrolysis,broadeningthescopeofrenewableenergyutilization.Greenhydrogenisakeycomplementto

renewableelectrification,offeringasolutiontodecarbonizesome

applications,forexampleinheavyindustry(includingthosewhere

fossilhydrogenisusedtoday),

shippingandaviation,andseasonalenergystorage.

Greenhydrogenisakey complementtorenewable electrification.

Consideringalltheseapplications,IRENAestimatesthathydrogen

anditsderivativeswouldsatisfyasizeablefraction(14percent)of

finalenergydemandin2050in

ascenarioinwhichrisingglobal

temperaturesresultingfrom

emissionsarelimitedtonotmorethan1.5°C(seeFigure1).Thebulk

ofthishydrogenandofitsderivativesshouldberenewableinorderto

reachclimateneutralityintheenergysystemoverall(IRENA,2023a).

Today,theglobalproductionof

hydrogen–around95megatonsofhydrogenperyear(MtH2/year)–isalmostexclusivelyderivedfromfossilfuelswithoutassociatedcarbon

captureandstorage.Thisfossil-basedhydrogenispredominantlyutilizedinindustriessuchasoil

refining,fertilizerproduction,anddownstreamchemicalprocesses.Currentproductionofhydrogen

emitstheequivalentof1,100-

1,300megatonsofCO2(MtCO2)globally(IEA,IRENAandUN

ClimateChangeHigh-Level

Champions,2023).Thus,atpresent,hydrogenproductionisamajornetcontributortoclimatechange,ratherthanavectorfordecarbonization.

Inanet-zeroworld,thecurrent

landscapeofhydrogenproductionandconsumptionwillneedtohavechangeddramatically.First,existinghydrogenusesneedtotransitiontoacleanhydrogensupply.Second,hydrogensupplyoverallneedstoexpandtoserveabroaderrangeofapplicationsinhard-to-decarbonizesectors.IRENAestimatesthattotalhydrogenproductionwillneedtogrowmorethanfive-foldfromnowuntil2050(IRENA,2023a).

Deliveringonthisscenariowill

requireamassiveexpansionin

renewablepowersupply,asthe

electricityneededforthatpurposeiscomparabletotoday’stotalglobalelectricityconsumption.1Itwill

alsorequireanunprecedented

scale-upanddeploymentof

electrolysercapacity,froma

negligibleinstalledbasetodayto

morethan5,700gigawatts(GW)

by2050(seeFigure2).

Thisexpansionofhydrogen

productionwillrequirethe

developmentofnewsupply

chains.This,inturn,willhavetrade

implications,bothintermsofthe

tradeofrenewablehydrogenitself

(ortradablecommoditiesproducedwithit,suchasammonia,methanolandreducediron)2aswellastradeintherequiredequipmentandservicestoproducethehydrogen,transportit,storeitanddeliverittothe

consumersattheendofthechain.

Inanet-zeroworld,the

currentlandscapeof

hydrogenproduction

andconsumptionwillneed tochange.

INTERNATIONALTRADEANDGREENHYDROGEN?9

63%

Fossilfuels

4%Others

6%

Traditional

usesof

biomass

5%

Modern

biomass

uses

22%

Electricity

(direct)

FIGURE1

Breakdownoftotalfinalenergyconsumption

byenergycarrierunderIRENA’s1.5°Cscenario

Source:IRENA(2023a).

2020

374EJTotal?nalenergyconsumption

TFEC

(%)

28%Renewableshareinelectricity

2050(1.5°CScenario)

353EJTotal?nalenergyconsumption

Renewableshare

inhydrogen

94%

Fossilfuels

12%

16%

Modernbiomassuses

14%

Hydrogen

(directuse

ande-fuels)*

7%

Others

51Elec(dire

%

tricity

ct)

91%

Renewableshareinelectricity

FIGURE2

Globalcleanhydrogensupplyin2020,2030and2050in

IRENA’s1.5°Cscenario

Source:IRENA(2023a).

Note:1.5-S=1.5°Cscenario;GW=gigawatt;PJ=petajoule.

2022US$/kWh

0.445

95thpercentile

0.380

0.197

5thpercentile

0.082

0.107

0.061

0.056

Fossilfuelcostrange

0.118

1.2Prospectsforgreenhydrogenproduction

AmajorbarriertothedeploymentThecostofrenewablepowergenerationinmanyregionsofthe

ofgreenhydrogentodatehasgenerationisfallingveryquicklyworld,andcostshavethepotential

beenthehighercostsofproduction(seeFigure3).Forinstance,overtocontinuetodeclineasthe

comparedtounabated(i.e.,whichthelast12years,thecostofsolartechnologycontinuestoimprove.

causeshighcarbonemissions)photovoltaic(PV)powerhas

fossil-basedhydrogen.Thedroppedbyalmost90percent.TheTherecouldpotentiallybeasimilar

prospectsforcheapergreencostsofonshoreandoffshorewindcostreductionphenomenonwith

hydrogeninthefuturearedrivengenerationhavealsodroppedveryelectrolyserstoproducegreen

bytwokeyfactors:thecostofsubstantially,by69percentandhydrogenfromrenewableelectricity.

renewableelectricityandthecostof59percentrespectively(IRENA,IRENA’sanalysissuggeststhat,if

electrolysers.2023b).Today,solarandwindaretechnologydeploymentvolumes

thecheapestformsofnewpowerweretobeinlinewithwhatis

FIGURE3

Globallevelizedcost*ofelectricityfromnewlycommissionedutility-scale

renewablepowertechnologies

Source:IRENA(2023b).

0.5

0.4

0.3

0.2

0.1

0

Solar

photovoltaic

Offshorewind

Onshorewind

Geothermal

Biomass

Hydropower

Concentrating

solarpower

0.042

0.061

0.081

0.053

0.033

0.049

20102022201020222010202220102022201020222010202220102022

Note:kWh=Kilowatt-hour,i.e.,ameasureofthequantityofenergydeliveredbyonekilowattofpowerforadurationofonehour.

*Thelevelizedcostofelectricityistheratiooflifetimecoststolifetimeelectricityproductionofapowergenerator,bothofwhicharediscountedbacktoacommonyearusingadiscountratethatreflectsthecostofcapital.

INTERNATIONALTRADEANDGREENHYDROGEN?11

Hydrogencost(US$/kgH2)

ElectrolysercostUS$1,000/kW

in2020:

ElectrolysercostUSD650/kW

Electrolysercost

in2020:

in2020:

US$1,000/kW

F

ossilfuelrange

ElectrolysercostUS$650/kW

in2020:

FIGURE4

Greenhydrogencostestimationsbasedondeploymentlevels,power

supplyandelectrolysercost

Source:IRENA(2020a).

6

5

4

3

2

1

0

Electrolyserprice

US$65/MWh

Electrolyserprice

US$20/MWh

Electrolysercostin2050:

US$307/kW@1TWInstalledcapacity

Electrolysercostin2050:

US$130/kW@5TWinstalledcapacity

Electrolysercostin2050:

US$307/kW@1TWInstalledcapacity

Electrolysercostin2050:

US$130/kW@5TWinstalledcapacity

2020202520302035204020452050

needed3tomeetthegoalsofthe

ParisAgreementby2050,the

effectsoflearningbydoingand

economiesofscalewouldtrigger

substantialreductionsinthecost

ofelectrolysers(IRENA,2020a).

Suchreductionsintheinstalled

costsofelectrolysers,pairedwithfurthercostreductionsinrenewablepowergeneration,couldmake

greenhydrogencompetitivewith

fossil-basedhydrogenalreadyby

thesecondhalfofthisdecadein

locationswithfavourablerenewableresourceconditions(seeFigure4).

Theoverallavailabilityofrenewableenergywillnotbealimitationto

scalinguphydrogenproduction

inthefuture.Renewablesourcescandeliverallthegreenhydrogenthattheworldneedsforanet-zeroenergysystem:IRENAestimates(IRENA,2022c)theglobalgreenhydrogentechnicalpotentialat

abouttwentytimesthetotalglobalprimaryenergydemandin2050(seeFigure5.1).

Incontrasttofossilfuels,wherea

handfulofcountriescontrolalargefractionoftheglobalresource,in

thecaseofgreenhydrogen,the

potentialforgreenhydrogenismuchmoregeographicallydistributedin

nature,asitreliesmostlyonsolarandwindresources,whichareavailablethroughouttheworld

(seeFigure5.2).

Thisgreenhydrogenpotential,

however,willbeavailableatvery

differentcostsacrossdifferent

regions.Hydrogencanbeproducedmostcost-efficientlyinlocationswiththebestrenewableenergyresourcesandlowprojectdevelopmentcosts(IRENA,2019).Accesstohigh-

quality,abundantrenewablepowergenerationwillbecrucial,asthis

willbeakeydriveroftherelative

competitivenessofcertainregionscomparedtootherstoproduce

hydrogenortradablecommoditiesproducedwithhydrogen.Therefore,theproductionofgreenhydrogenislikelytoscaleupinregionswith

highpotentialforrenewableenergy.

Asidefromrenewableresource

conditions,thecostofcapitalplaysakeyroleintheoverallcostofgreenhydrogen–asthecoststructureisdominatedbycapitalexpenditures

–andwillbeanotherkey

competitivenessfactor.Additionalfactorstoconsiderincludeland

availability,wateraccessandthe

infrastructureoptionsnecessary

fortransportingandpotentially

exportingenergytomeettheneedsofsignificantdemandcentres

(IRENA,2022a).

Levelizedcostofhydrogen(US$/kgH2)

Globalhydrogendemandin2050:74EJ

Globalprimaryenergysupplyin2050:614EJ

0

02,0004,0006,0008,00010,000

Hydrogentechnicalpotential(EJ/yr)

FIGURE5.1

Greenhydrogenpotentialversusglobalprimaryenergydemandin2050

Source:IRENA(2022c).

4

3.5

3

2.5

2

1.5

1

0.5

ArgentinaAustraliaBrazil

RussianFederationSaudiArabia

CanadaChinaMENAregion

Sub-SaharanAfricaUnitedStates

Restoftheworld

FIGURE5.2

Levelizedcostofhydrogenin2050

Source:IRENA(2022c).

Noteligible0.611.52

2.53US$/kgH2

3.54

4.55LCOH>5

INTERNATIONALTRADEANDGREENHYDROGEN?13

1.3Howglobalhydrogentradecouldplayoutinthefuture

Whilethereismorethanenoughgreenhydrogenpotentialtomeettheexpectedglobaldemand,thereareeconomiesorregionsinwhichthedomesticproductionpotentialmightnotbeenoughtosatisfythedomesticdemand.Furthermore,insomecases,itmaybecheaperforcertaineconomiestoimportfromlocationswithlowerproduction

costs.Thismeansthatinternationaltradecouldplayasignificantroleinmatchingsupplyanddemand.

Greenhydrogenandderivative

commodities,suchasrenewable

ammonia,offeropportunitiesfor

producing,storingandtransportingrenewableenergyfromareaswith

substantialrenewableenergy

potentialtoregionswithsignificanthydrogendemandbutinsufficientormorecostlyrenewableenergysupply(IRENA,2022a).

Hydrogencanpotentiallybe

tradedinmultipleforms.Itcanbetransportedoverlongdistancesasagasthroughpipelines,oritcanbeshippedinliquidform.

importingregiontocompensateforthetransportcost(IRENA,2022a).5

Tounderstandhowtheseglobal

tradeflowscouldpotentiallyplay

outinafullydecarbonizedglobal

energysystem,in2022IRENA

carriedoutatradeanalysisbasedonaglobalcost-optimization

model.Theanalysisfocusesontwocommodities–greenhydrogenandgreenammonia.

Theanalysisshowsthatby2050,

aboutaquarterofthetotalglobal

hydrogendemandinIRENA’s1.5°Cscenariocouldbesatisfiedthroughinternationaltrade.Theotherthree-quarterswouldbedomestically

producedandconsumed.

Ofthehydrogenthatwouldbe

internationallytradedby2050in

the1.5°Cscenario,around55percentwouldbetradedviapipelines.Theremaining45percentoftheinternationallytradedhydrogen

wouldbeshipped,predominantlyasammonia,whichwouldmostlybeusedwithoutbeingreconvertedtohydrogen,asaninputforthe

Greenhydrogenandits

derivativesofferopportunities forproducing,storingand

transportingrenewableenergy.

By2050,internationaltradecouldsatisfyabout?ofthetotalglobalhydrogen

demandinIRENA’s1.5°Cscenario.

55%

ofthishydrogenwouldbetradedviapipelines.

Hydrogencanalsobefurther

transformedintoanothercommodity,suchasammoniaormethanol,

andtransportedinliquidform.

Thisadditionalprocessingresults

insignificantenergylosses,and

thereforeanincreaseinthecostperunitofenergydelivered.

Table1presentsabriefoverviewofhydrogentransportalternativeswithkeyadvantagesanddisadvantages.4

Tomaketradecost-effective,thecostofproducinggreenhydrogenmustbesufficientlycheaperintheexportingregioncomparedtothe

fertilizerindustryorassyntheticfuelforinternationalshipping(IRENA,2022a)(seeFigure6).

Theresultssummarizedaboveare

basedentirelyoncost-optimizationmodellinganddonottakeinto

accountotherinvestmentdecisionfactors,suchasenergysecurity,

politicalstabilityoreconomic

development,whichmayalso

substantiallyimpactthefuture

landscapeofhydrogenproduction.However,theresultsareindicativeofpotentialmajortradeflowsandthepredominanttransportmodes.

45%

ofthishydrogenwouldbeshipped,predominantlyasammonia.

TABLE1

Overviewofadvantagesanddisadvantagesofhydrogentransport

alternatives

Source:IRENA(2022b).

Ammonia

Liquidhydrogen

Liquidorganichydrogencarrier(LOHC)

Gas(pipelines)

Advantages

?Alreadyproducedonalargescale.

?Alreadygloballytraded.

?Lowtransportlosses.

?Highenergydensityandhydrogencontent.

?Carbon-freecarrier.

?Canbeuseddirectlyinsome

applications(e.g.,fertilizers,

maritimefuel).

?Caneasilybeliquefied.

?Limitedenergyconsumptionfor

regasification(mostoftheenergyis

consumedintheexportingregion,whichisexpectedtohavelowrenew

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論