![IRENA-國(guó)際貿(mào)易和綠色氫:支持全球向低碳經(jīng)濟(jì)轉(zhuǎn)型_第1頁(yè)](http://file4.renrendoc.com/view11/M01/09/1C/wKhkGWWAarWAAnuUAAEIIRnL2n4845.jpg)
![IRENA-國(guó)際貿(mào)易和綠色氫:支持全球向低碳經(jīng)濟(jì)轉(zhuǎn)型_第2頁(yè)](http://file4.renrendoc.com/view11/M01/09/1C/wKhkGWWAarWAAnuUAAEIIRnL2n48452.jpg)
![IRENA-國(guó)際貿(mào)易和綠色氫:支持全球向低碳經(jīng)濟(jì)轉(zhuǎn)型_第3頁(yè)](http://file4.renrendoc.com/view11/M01/09/1C/wKhkGWWAarWAAnuUAAEIIRnL2n48453.jpg)
![IRENA-國(guó)際貿(mào)易和綠色氫:支持全球向低碳經(jīng)濟(jì)轉(zhuǎn)型_第4頁(yè)](http://file4.renrendoc.com/view11/M01/09/1C/wKhkGWWAarWAAnuUAAEIIRnL2n48454.jpg)
![IRENA-國(guó)際貿(mào)易和綠色氫:支持全球向低碳經(jīng)濟(jì)轉(zhuǎn)型_第5頁(yè)](http://file4.renrendoc.com/view11/M01/09/1C/wKhkGWWAarWAAnuUAAEIIRnL2n48455.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Internationaltradeandgreenhydrogen
Supportingtheglobaltransitiontoalow-carboneconomy
DISCLAIMER
Thispublicationandthematerialhereinhavebeenpreparedunder
theresponsibilityoftheWTOSecretariatandoftheInternational
RenewableEnergyAgencyandareprovided“asis”.Allreasonable
precautionshavebeentakenbytheWTOandIRENAtoverifythe
reliabilityofthematerialinthispublication.However,neitherthe
WTOnorIRENA,noranyoftheirofficials,agents,dataorother
third-partycontentprovidersprovidesawarrantyofanykind,
eitherexpressedorimplied,andtheyacceptnoresponsibilityor
liabilityforanyconsequenceofuseofthepublicationormaterial
herein.
Theinformationcontainedhereindoesnotnecessarilyreflect
thepositionsoropinionsofWTOmembers,norofthemembers
ofIRENA.Itiswithoutprejudicetotherightsandobligations
ofWTOmembersundertheWTOagreements.Theopinions
expressedandargumentsemployedarenotintendedtoprovide
anyauthoritativeorlegalinterpretationofprovisionsoftheWTO
agreements,andshallinnowaybereadorunderstoodtohave
anylegalimplications.
Thementionofspecificcompaniesorcertainprojectsorproducts
doesnotimplythattheyareendorsedorrecommendedby
eithertheWTOorIRENAinpreferencetoothersofasimilar
naturethatarenotmentioned.Thedesignationsemployedand
thepresentationofmaterialhereindonotimplytheexpression
ofanyopiniononthepartoftheWTOorIRENAconcerning
thelegalstatusofanyregion,country,territory,cityorareaor
ofitsauthorities,orconcerningthedelimitationoffrontiersor
boundaries.
INTERNATIONALTRADEANDGREENHYDROGEN?1
Contents
AcknowledgementsandAbbreviations2
ExecutivesummaryandFiveactionsforconsiderationbypolicymakers
3
1
Introduction
6
1.1
Theroleofgreenhydrogeninagloballow-carboneconomy
7
1.2
Prospectsforgreenhydrogenproduction
10
1.3
Howcouldglobalhydrogentradeplayoutinthefuture
13
2
Mappingsupplychainissuesfromatradeperspective
16
2.1
Tradeinhydrogenandhydrogenderivatives
20
2.2
Electrolysersasakeytechnologyforthegreenhydrogensupplychain
24
3
Trade-relatedpoliciesalongthehydrogenvaluechain
26
3.1
Tariffsandothertaxes
29
3.2
Qualityinfrastructure–standards,certificationandbeyond
30
3.3
Subsidies
34
3.4
Sustainablegovernmentprocurement
37
4
Considerationsfordevelopment
40
5
Theroleofinternationalcooperation
44
Fiveactionsforconsiderationbypolicymakers
48
Annex
51
Bibliography
54
INTERNATIONALTRADEANDGREENHYDROGEN?3
EXECUTIVESUMMARY
Theroleofgreenhydrogentradeinthetransitiontoalow-carboneconomy
Greenhydrogen,produced
exclusivelyfromrenewableenergy,israpidlygainingimportanceasa
potentialfactorinthetransitionto
anet-zeroglobaleconomy.Itoffersasolutiontodecarbonizeenergy
applicationswherethedirectuseofrenewableelectricityorfuelsisnotatechnicallyviableor
cost-effectivesolution,suchasheavyindustry,shipping,aviationand
seasonalenergystorage.
Greenhydrogencouldplayakeyroleinachievingthegoalsofthe
ParisAgreement1bymid-century,i.e.,topursueeffortstolimitthe
increaseintheglobalaverage
temperatureto1.5°C,andtowellbelow2°C,abovepre-industrial
levels.Hydrogenproductionis
currentlyamajornetcontributor
toclimatechange,ratherthanto
decarbonization,becausecurrentmethodsofproducinghydrogen
arecarbon-intensive.Thus,toarriveatanet-zeroworld,thelandscapeofhydrogenproductionand
consumptionwillneedtochangedramatically.
ToachievethegoalsoftheParis
Agreement,thecurrentusesservedbyhydrogen(e.g.,toproduce
fertilizersorotherchemicals)willneedtobesuppliedbyclean
hydrogen.Inaddition,thesupplyofhydrogenoverallwillneedto
expandmorethanfive-foldby
2050,tomorethan500MT/y,ifitistoserveabroaderrangeofusesanddecarbonizecarbon-intensivesectors.Giventhatrenewable
electricityisnecessarytoproducegreenhydrogen,deliveringonsuchascenariowill,inparallel,requireamassiveexpansioninrenewablepowergeneration.
TheInternationalRenewableEnergyAgency(IRENA)estimatesthat
theglobaltechnicalpotentialto
producegreenhydrogenisas
muchastwentytimeswhatthe
totalglobalprimaryenergydemandwillbein2050.Accesstohigh-
qualityabundantrenewablepowergenerationwillbeacrucialcost
factor,asthiswillbeakeydriveroftherelativecompetitiveness
ofcertainregionsinproducing
hydrogenorinproducingtradablecommoditiesusinghydrogen.
Greenhydrogenandderivative
commodities,suchasgreen
ammonia,makeitpossibleto
producerenewableenergyinareaswithsubstantialrenewableenergypotential,andtotransportitto
regionswithsignificanthydrogendemandbutaninsufficientormorecostlyrenewableenergysupply.
Internationaltradecouldplaya
significantroleinmatchingsupply
anddemandforgreenhydrogenanditsderivatives,becausethedomesticproductionpotentialofsome
economiesandregionsmaynot
beenoughtosatisfytheirdomesticdemand,anditmaybecheaperforsomeeconomiestoimportgreen
hydrogenfromlocationswithlowerproductioncosts.AnalysisbyIRENAsuggeststhatby2050aboutone
quarterofthetotalglobalhydrogen
demandcouldbesatisfiedthrough
internationaltrade.
Currentlyhydrogenislargely
producedusingnaturalgas,with
tradeflowsintheorderof
US$150-200millionperyear.The
tradeofcommoditiesthatcanbe
derivedfrom(green)hydrogen,
notablyammoniaandmethanol
–ismoresignificant.Thesewere
respectivelyworthUS$17.5billion
andUS$14.1billionin2022.
Thetradedynamicsforgreen
hydrogenandderivativesina
net-zeroscenariowillbevery
differentfromthoseoftoday’s
internationalfossilfuelmarkets.The
geographicaldistributionofgreen
hydrogenproductionpotentialis
widespread–asitislinkedtosolar
andwindpowersupply–andthere
arefewmajorpotentialimporters.
Bycontrast,intoday’soilandgasmarkets,ahandfulofplayerscontrolalargeproportionoftheglobal
supply,foramuchlargernumberof
importers.
Thephysicalcharacteristicsof
hydrogenrenderittechnicallydifficultandeconomicallycostlytotransportoverlongdistances.
Greenhydrogencould
playakeyroleinachievingthegoalsoftheParis
Agreementbymid-century.
Forthisreason,greenhydrogen
tradewilllikelymaterializetoagreatextentastradeincommodities
producedthroughtheuseof
hydrogen,suchasammonia,
methanol,syntheticfuelsoriron.Theprospectofcost-competitivegreenhydrogenproductioninregionswithabundant,high-qualityrenewable
energycouldpotentiallydrivethe
relocationofsomeenergy-intensiveindustriesandtheemergenceof
newcommoditytradeflows.
Aswellasincreasingtrade
ofhydrogenanditsderivative
commodities,scalingupgreen
hydrogenforthepurposeof
decarbonizationwillresultina
significantincreaseintradeflowsofthetechnologiesandservicesrequiredforitsproduction,suchaselectrolysers(whichuseelectricitytosplitwaterintohydrogenand
oxygen),compressors,pipesandvalves.
Atpresent,morethan30
economiesaroundtheglobealreadyhavenationalstrategiesforlow-
carbonhydrogen.Therefore,itis
alreadycriticaltobeginanticipatingtheenablingconditionstofacilitatethistrade,intermsofinfrastructuredevelopment,marketdesignandregulations,andconducivetradepolicies.
Anumberofpathwayscouldhelp
torendertradepoliciesmoreopen,predictable,coherentandinclusive,toadvancetheirroleinfosteringandshapingthedevelopmentofgreenhydrogensupplychains.
Thisreportoutlinesfiveactionsforconsiderationbypolicymakers:
1.Addressingtradebarriers
alongthegreenhydrogen
supplychaintopromote
thedevelopmentofgreenhydrogenbyloweringcostsandfosteringtechnology
access.
2.Developingsoundquality
infrastructuretoguarantee
theenvironmentalintegrityofgreenhydrogenproductionandprovideinformationontheproductionprocessandemissionsfootprintalongthevaluechain.
3.Implementingsupportpoliciestohelpsustainmarketgrowth,promotecostefficienciesandnarrowthecostdifferential
betweentheproductioncostsofgreenandoffossil-basedhydrogen.
4.Usingsustainablegovernmentprocurementtofosteralargeandstabledemandforgreenhydrogen,itsderivativesandrelatedtechnologies.
5.Increasinginternational
cooperationinsupportofgreenhydrogentradetoensure
alignmentandconsistencyindefinitionsandstandardsforemissionscertificationschemesandcontributetobringingaboutsocialandeconomicbenefits.
Internationaltradecould
playasignificantrolein
matchingsupplyand
demandforgreenhydrogen anditsderivatives.
Endnotes
1See
/en/climatechange/paris-agreement
.
INTERNATIONALTRADEANDGREENHYDROGEN?5
FIVEACTIONSFORCONSIDERATION
BYPOLICYMAKERS
Asetoffiveactionsforeconomiestoconsiderinordertoscale
upandfacilitateglobaltrade
ofgreenhydrogen.
?Adoptnationalmeasuresbasedon
internationalstandardsandengageininternationalstandardization.
?Fosterinternationaldialogueoncarbonmeasurementmethodologies,definitionsoflow-carbonhydrogenandverificationprocedures.
?Informcustomersvialabellingrequirementsbasedonqualityinfrastructure.
?Implementsustainablegovernmentprocurementpoliciesbypurchasinglow-carbongoodsandservicesandstimulatinginnovativesolutions.
?Considercoordinateddemand-creatingpoliciesandcollaborationtoachieve
economiesofscaleandacceleratecostreductions.
1.Addresstrade
barriersalong
thegreenhydrogen
supplychain
2.Developsound
qualityinfrastructure
forgreenhydrogen
trade
3.Implementsupport
policiesforgreen
hydrogen
4.Usesustainable
government
procurementto
fostergreen
hydrogendemand
5.Increase
international
cooperationongreen
hydrogentrade
?Promotetradeingoodsandservices
relatedtorenewableenergyproduction.
?Reducetariffsandnon-tariffbarrierson
greenhydrogen,electrolysers,derivativesandotherproductsalongthesupplychain.
?Implementtargetedandnon-discriminatoryenvironmentalsubsidiestohelpsustain
growthinelectrolysercapacityandgreenhydrogenproduction.
?Closetheeconomicgapbetweenfossilfuelsandgreenhydrogenbyphasingoutfossilfuelsubsidies.
?Encouragetechnologydevelopmentandinnovationthroughdialogue.
?Engageincooperationforaongreenhydrogen.
?Increasetechnicalassistanceandcapacity-building.
?SupporttheneedsofdevelopingeconomiesthroughAidforTrade.
1INTRODUCTION
INTERNATIONALTRADEANDGREENHYDROGEN?7
1.1Theroleofgreenhydrogeninagloballow-carboneconomy
TomeetthegoalsoftheParis
Agreementbymid-century,the
globalenergysystemwillneedtobedeeplytransformedwithinthenext
twoandahalfdecades.Accordingtothescenarioproposedinthe
InternationalRenewableEnergy
Agency’s(IRENA)WorldEnergy
TransitionsOutlook2023:1.5°C
Pathway(IRENA,2023a),more
thantwo-thirdsofthecarbondioxide(CO2)emissionreductionstowardsanet-zeroenergysystemcanbe
achievedthroughanincreased
supplyofrenewableenergy,the
electrificationofenergyservices
currentlysuppliedwithfossilfuels,
andtheimprovementofenergy
efficiency.Inthisscenariofora
decarbonizedworld,electricitywouldbecomethecentralenergycarrier,
accountingformorethanhalfoftheworlds’finalenergyconsumption,upfromaboutonefifthtoday.
However,notallenergyusescan
beelectrified.Insomecases,a
renewablemoleculeisneeded
aspartoftheprocess,eitheras
feedstock–suchashydrogen
forammoniaproduction–orasa
chemicalagent–suchashydrogenforprimarysteelproduction.In
othercases,electrificationisnot
technicallyfeasibleatpresentduetotheenergydensityrequirementsofthefuel,suchasintheaviationandshippingsectors.Therefore,there
isaneedforsolutionstoclosethedecarbonizationgapforapplicationsinwhichthedirectuseofrenewableelectricityorfuelsisnotatechnicallyviableorcost-effectivesolution.
Renewable–green–hydrogencanactasthelinkbetweenrenewableelectricitygenerationandhard-to-abate(i.e.,forwhichthetransitiontonetzeroisdifficulteitherintermsoftechnologyorcost)sectors
14%
Hydrogenanditsderivativescouldsatisfy14%offinalenergydemandin2050.
orapplications(IRENA,2022a).
Renewableelectricitycanbe
convertedtogreenhydrogenvia
electrolysis,broadeningthescopeofrenewableenergyutilization.Greenhydrogenisakeycomplementto
renewableelectrification,offeringasolutiontodecarbonizesome
applications,forexampleinheavyindustry(includingthosewhere
fossilhydrogenisusedtoday),
shippingandaviation,andseasonalenergystorage.
Greenhydrogenisakey complementtorenewable electrification.
Consideringalltheseapplications,IRENAestimatesthathydrogen
anditsderivativeswouldsatisfyasizeablefraction(14percent)of
finalenergydemandin2050in
ascenarioinwhichrisingglobal
temperaturesresultingfrom
emissionsarelimitedtonotmorethan1.5°C(seeFigure1).Thebulk
ofthishydrogenandofitsderivativesshouldberenewableinorderto
reachclimateneutralityintheenergysystemoverall(IRENA,2023a).
Today,theglobalproductionof
hydrogen–around95megatonsofhydrogenperyear(MtH2/year)–isalmostexclusivelyderivedfromfossilfuelswithoutassociatedcarbon
captureandstorage.Thisfossil-basedhydrogenispredominantlyutilizedinindustriessuchasoil
refining,fertilizerproduction,anddownstreamchemicalprocesses.Currentproductionofhydrogen
emitstheequivalentof1,100-
1,300megatonsofCO2(MtCO2)globally(IEA,IRENAandUN
ClimateChangeHigh-Level
Champions,2023).Thus,atpresent,hydrogenproductionisamajornetcontributortoclimatechange,ratherthanavectorfordecarbonization.
Inanet-zeroworld,thecurrent
landscapeofhydrogenproductionandconsumptionwillneedtohavechangeddramatically.First,existinghydrogenusesneedtotransitiontoacleanhydrogensupply.Second,hydrogensupplyoverallneedstoexpandtoserveabroaderrangeofapplicationsinhard-to-decarbonizesectors.IRENAestimatesthattotalhydrogenproductionwillneedtogrowmorethanfive-foldfromnowuntil2050(IRENA,2023a).
Deliveringonthisscenariowill
requireamassiveexpansionin
renewablepowersupply,asthe
electricityneededforthatpurposeiscomparabletotoday’stotalglobalelectricityconsumption.1Itwill
alsorequireanunprecedented
scale-upanddeploymentof
electrolysercapacity,froma
negligibleinstalledbasetodayto
morethan5,700gigawatts(GW)
by2050(seeFigure2).
Thisexpansionofhydrogen
productionwillrequirethe
developmentofnewsupply
chains.This,inturn,willhavetrade
implications,bothintermsofthe
tradeofrenewablehydrogenitself
(ortradablecommoditiesproducedwithit,suchasammonia,methanolandreducediron)2aswellastradeintherequiredequipmentandservicestoproducethehydrogen,transportit,storeitanddeliverittothe
consumersattheendofthechain.
Inanet-zeroworld,the
currentlandscapeof
hydrogenproduction
andconsumptionwillneed tochange.
INTERNATIONALTRADEANDGREENHYDROGEN?9
63%
Fossilfuels
4%Others
6%
Traditional
usesof
biomass
5%
Modern
biomass
uses
22%
Electricity
(direct)
FIGURE1
Breakdownoftotalfinalenergyconsumption
byenergycarrierunderIRENA’s1.5°Cscenario
Source:IRENA(2023a).
2020
374EJTotal?nalenergyconsumption
TFEC
(%)
28%Renewableshareinelectricity
2050(1.5°CScenario)
353EJTotal?nalenergyconsumption
Renewableshare
inhydrogen
94%
Fossilfuels
12%
16%
Modernbiomassuses
14%
Hydrogen
(directuse
ande-fuels)*
7%
Others
51Elec(dire
%
tricity
ct)
91%
Renewableshareinelectricity
FIGURE2
Globalcleanhydrogensupplyin2020,2030and2050in
IRENA’s1.5°Cscenario
Source:IRENA(2023a).
Note:1.5-S=1.5°Cscenario;GW=gigawatt;PJ=petajoule.
2022US$/kWh
0.445
95thpercentile
0.380
0.197
5thpercentile
0.082
0.107
0.061
0.056
Fossilfuelcostrange
0.118
1.2Prospectsforgreenhydrogenproduction
AmajorbarriertothedeploymentThecostofrenewablepowergenerationinmanyregionsofthe
ofgreenhydrogentodatehasgenerationisfallingveryquicklyworld,andcostshavethepotential
beenthehighercostsofproduction(seeFigure3).Forinstance,overtocontinuetodeclineasthe
comparedtounabated(i.e.,whichthelast12years,thecostofsolartechnologycontinuestoimprove.
causeshighcarbonemissions)photovoltaic(PV)powerhas
fossil-basedhydrogen.Thedroppedbyalmost90percent.TheTherecouldpotentiallybeasimilar
prospectsforcheapergreencostsofonshoreandoffshorewindcostreductionphenomenonwith
hydrogeninthefuturearedrivengenerationhavealsodroppedveryelectrolyserstoproducegreen
bytwokeyfactors:thecostofsubstantially,by69percentandhydrogenfromrenewableelectricity.
renewableelectricityandthecostof59percentrespectively(IRENA,IRENA’sanalysissuggeststhat,if
electrolysers.2023b).Today,solarandwindaretechnologydeploymentvolumes
thecheapestformsofnewpowerweretobeinlinewithwhatis
FIGURE3
Globallevelizedcost*ofelectricityfromnewlycommissionedutility-scale
renewablepowertechnologies
Source:IRENA(2023b).
0.5
0.4
0.3
0.2
0.1
0
Solar
photovoltaic
Offshorewind
Onshorewind
Geothermal
Biomass
Hydropower
Concentrating
solarpower
0.042
0.061
0.081
0.053
0.033
0.049
20102022201020222010202220102022201020222010202220102022
Note:kWh=Kilowatt-hour,i.e.,ameasureofthequantityofenergydeliveredbyonekilowattofpowerforadurationofonehour.
*Thelevelizedcostofelectricityistheratiooflifetimecoststolifetimeelectricityproductionofapowergenerator,bothofwhicharediscountedbacktoacommonyearusingadiscountratethatreflectsthecostofcapital.
INTERNATIONALTRADEANDGREENHYDROGEN?11
Hydrogencost(US$/kgH2)
ElectrolysercostUS$1,000/kW
in2020:
ElectrolysercostUSD650/kW
Electrolysercost
in2020:
in2020:
US$1,000/kW
F
ossilfuelrange
ElectrolysercostUS$650/kW
in2020:
FIGURE4
Greenhydrogencostestimationsbasedondeploymentlevels,power
supplyandelectrolysercost
Source:IRENA(2020a).
6
5
4
3
2
1
0
Electrolyserprice
US$65/MWh
Electrolyserprice
US$20/MWh
Electrolysercostin2050:
US$307/kW@1TWInstalledcapacity
Electrolysercostin2050:
US$130/kW@5TWinstalledcapacity
Electrolysercostin2050:
US$307/kW@1TWInstalledcapacity
Electrolysercostin2050:
US$130/kW@5TWinstalledcapacity
2020202520302035204020452050
needed3tomeetthegoalsofthe
ParisAgreementby2050,the
effectsoflearningbydoingand
economiesofscalewouldtrigger
substantialreductionsinthecost
ofelectrolysers(IRENA,2020a).
Suchreductionsintheinstalled
costsofelectrolysers,pairedwithfurthercostreductionsinrenewablepowergeneration,couldmake
greenhydrogencompetitivewith
fossil-basedhydrogenalreadyby
thesecondhalfofthisdecadein
locationswithfavourablerenewableresourceconditions(seeFigure4).
Theoverallavailabilityofrenewableenergywillnotbealimitationto
scalinguphydrogenproduction
inthefuture.Renewablesourcescandeliverallthegreenhydrogenthattheworldneedsforanet-zeroenergysystem:IRENAestimates(IRENA,2022c)theglobalgreenhydrogentechnicalpotentialat
abouttwentytimesthetotalglobalprimaryenergydemandin2050(seeFigure5.1).
Incontrasttofossilfuels,wherea
handfulofcountriescontrolalargefractionoftheglobalresource,in
thecaseofgreenhydrogen,the
potentialforgreenhydrogenismuchmoregeographicallydistributedin
nature,asitreliesmostlyonsolarandwindresources,whichareavailablethroughouttheworld
(seeFigure5.2).
Thisgreenhydrogenpotential,
however,willbeavailableatvery
differentcostsacrossdifferent
regions.Hydrogencanbeproducedmostcost-efficientlyinlocationswiththebestrenewableenergyresourcesandlowprojectdevelopmentcosts(IRENA,2019).Accesstohigh-
quality,abundantrenewablepowergenerationwillbecrucial,asthis
willbeakeydriveroftherelative
competitivenessofcertainregionscomparedtootherstoproduce
hydrogenortradablecommoditiesproducedwithhydrogen.Therefore,theproductionofgreenhydrogenislikelytoscaleupinregionswith
highpotentialforrenewableenergy.
Asidefromrenewableresource
conditions,thecostofcapitalplaysakeyroleintheoverallcostofgreenhydrogen–asthecoststructureisdominatedbycapitalexpenditures
–andwillbeanotherkey
competitivenessfactor.Additionalfactorstoconsiderincludeland
availability,wateraccessandthe
infrastructureoptionsnecessary
fortransportingandpotentially
exportingenergytomeettheneedsofsignificantdemandcentres
(IRENA,2022a).
Levelizedcostofhydrogen(US$/kgH2)
Globalhydrogendemandin2050:74EJ
Globalprimaryenergysupplyin2050:614EJ
0
02,0004,0006,0008,00010,000
Hydrogentechnicalpotential(EJ/yr)
FIGURE5.1
Greenhydrogenpotentialversusglobalprimaryenergydemandin2050
Source:IRENA(2022c).
4
3.5
3
2.5
2
1.5
1
0.5
ArgentinaAustraliaBrazil
RussianFederationSaudiArabia
CanadaChinaMENAregion
Sub-SaharanAfricaUnitedStates
Restoftheworld
FIGURE5.2
Levelizedcostofhydrogenin2050
Source:IRENA(2022c).
Noteligible0.611.52
2.53US$/kgH2
3.54
4.55LCOH>5
INTERNATIONALTRADEANDGREENHYDROGEN?13
1.3Howglobalhydrogentradecouldplayoutinthefuture
Whilethereismorethanenoughgreenhydrogenpotentialtomeettheexpectedglobaldemand,thereareeconomiesorregionsinwhichthedomesticproductionpotentialmightnotbeenoughtosatisfythedomesticdemand.Furthermore,insomecases,itmaybecheaperforcertaineconomiestoimportfromlocationswithlowerproduction
costs.Thismeansthatinternationaltradecouldplayasignificantroleinmatchingsupplyanddemand.
Greenhydrogenandderivative
commodities,suchasrenewable
ammonia,offeropportunitiesfor
producing,storingandtransportingrenewableenergyfromareaswith
substantialrenewableenergy
potentialtoregionswithsignificanthydrogendemandbutinsufficientormorecostlyrenewableenergysupply(IRENA,2022a).
Hydrogencanpotentiallybe
tradedinmultipleforms.Itcanbetransportedoverlongdistancesasagasthroughpipelines,oritcanbeshippedinliquidform.
importingregiontocompensateforthetransportcost(IRENA,2022a).5
Tounderstandhowtheseglobal
tradeflowscouldpotentiallyplay
outinafullydecarbonizedglobal
energysystem,in2022IRENA
carriedoutatradeanalysisbasedonaglobalcost-optimization
model.Theanalysisfocusesontwocommodities–greenhydrogenandgreenammonia.
Theanalysisshowsthatby2050,
aboutaquarterofthetotalglobal
hydrogendemandinIRENA’s1.5°Cscenariocouldbesatisfiedthroughinternationaltrade.Theotherthree-quarterswouldbedomestically
producedandconsumed.
Ofthehydrogenthatwouldbe
internationallytradedby2050in
the1.5°Cscenario,around55percentwouldbetradedviapipelines.Theremaining45percentoftheinternationallytradedhydrogen
wouldbeshipped,predominantlyasammonia,whichwouldmostlybeusedwithoutbeingreconvertedtohydrogen,asaninputforthe
Greenhydrogenandits
derivativesofferopportunities forproducing,storingand
transportingrenewableenergy.
By2050,internationaltradecouldsatisfyabout?ofthetotalglobalhydrogen
demandinIRENA’s1.5°Cscenario.
55%
ofthishydrogenwouldbetradedviapipelines.
Hydrogencanalsobefurther
transformedintoanothercommodity,suchasammoniaormethanol,
andtransportedinliquidform.
Thisadditionalprocessingresults
insignificantenergylosses,and
thereforeanincreaseinthecostperunitofenergydelivered.
Table1presentsabriefoverviewofhydrogentransportalternativeswithkeyadvantagesanddisadvantages.4
Tomaketradecost-effective,thecostofproducinggreenhydrogenmustbesufficientlycheaperintheexportingregioncomparedtothe
fertilizerindustryorassyntheticfuelforinternationalshipping(IRENA,2022a)(seeFigure6).
Theresultssummarizedaboveare
basedentirelyoncost-optimizationmodellinganddonottakeinto
accountotherinvestmentdecisionfactors,suchasenergysecurity,
politicalstabilityoreconomic
development,whichmayalso
substantiallyimpactthefuture
landscapeofhydrogenproduction.However,theresultsareindicativeofpotentialmajortradeflowsandthepredominanttransportmodes.
45%
ofthishydrogenwouldbeshipped,predominantlyasammonia.
TABLE1
Overviewofadvantagesanddisadvantagesofhydrogentransport
alternatives
Source:IRENA(2022b).
Ammonia
Liquidhydrogen
Liquidorganichydrogencarrier(LOHC)
Gas(pipelines)
Advantages
?Alreadyproducedonalargescale.
?Alreadygloballytraded.
?Lowtransportlosses.
?Highenergydensityandhydrogencontent.
?Carbon-freecarrier.
?Canbeuseddirectlyinsome
applications(e.g.,fertilizers,
maritimefuel).
?Caneasilybeliquefied.
?Limitedenergyconsumptionfor
regasification(mostoftheenergyis
consumedintheexportingregion,whichisexpectedtohavelowrenew
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球丙二醛行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025年全球及中國(guó)低空洞焊膏行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025辦公寫字樓出租合同范本2
- 活牛購(gòu)銷合同
- 廣場(chǎng)商鋪?zhàn)赓U合同
- 2025北京市非居民供熱采暖合同(合同版本)
- 文化傳播項(xiàng)目合同
- 門窗安裝工承包合同范本
- 提升跨部門協(xié)作能力的技能培訓(xùn)
- 合同協(xié)議框架性合作協(xié)議
- 創(chuàng)業(yè)計(jì)劃路演-美甲
- 梁山伯與祝英臺(tái)小提琴譜樂(lè)譜
- 我國(guó)全科醫(yī)生培訓(xùn)模式
- 《摔跤吧爸爸》觀后感PPT
- 機(jī)構(gòu)編制重要事項(xiàng)的報(bào)告范文(5篇)
- DBJ51-T 188-2022 預(yù)拌流態(tài)固化土工程應(yīng)用技術(shù)標(biāo)準(zhǔn)
- 《長(zhǎng)津湖》電影賞析PPT
- 多維閱讀第10級(jí) who is who 看看都是誰(shuí)
- 滑雪運(yùn)動(dòng)介紹
- 高二下學(xué)期英語(yǔ)閱讀限時(shí)訓(xùn)練(一)
- 半導(dǎo)體制造工藝-13薄膜沉積(下)綜述課件
評(píng)論
0/150
提交評(píng)論