山東省臨朐市重點達標名校2024屆中考二模數(shù)學試題含解析_第1頁
山東省臨朐市重點達標名校2024屆中考二模數(shù)學試題含解析_第2頁
山東省臨朐市重點達標名校2024屆中考二模數(shù)學試題含解析_第3頁
山東省臨朐市重點達標名校2024屆中考二模數(shù)學試題含解析_第4頁
山東省臨朐市重點達標名校2024屆中考二模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省臨朐市重點達標名校2024屆中考二模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則①二次函數(shù)的最大值為a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④當y>0時,﹣1<x<3,其中正確的個數(shù)是()A.1 B.2 C.3 D.42.四個有理數(shù)﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣33.汽車剎車后行駛的距離s(單位:m)關于行駛的時間t(單位:s)的函數(shù)解析式是s=20t﹣5t2,汽車剎車后停下來前進的距離是()A.10mB.20mC.30mD.40m4.若||=-,則一定是()A.非正數(shù) B.正數(shù) C.非負數(shù) D.負數(shù)5.如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y(tǒng)=a(x﹣k)2+h.已知球與D點的水平距離為6m時,達到最高2.6m,球網與D點的水平距離為9m.高度為2.43m,球場的邊界距O點的水平距離為18m,則下列判斷正確的是()A.球不會過網 B.球會過球網但不會出界C.球會過球網并會出界 D.無法確定6.利用“分形”與“迭代”可以制作出很多精美的圖形,以下是制作出的幾個簡單圖形,其中是軸對稱但不是中心對稱的圖形是()A. B. C. D.7.某校為了了解七年級女同學的800米跑步情況,隨機抽取部分女同學進行800米跑測試,按照成績分為優(yōu)秀、良好、合格、不合格四個等級,繪制了如圖所示統(tǒng)計圖.該校七年級有400名女生,則估計800米跑不合格的約有()A.2人 B.16人C.20人 D.40人8.下列幾何體中,俯視圖為三角形的是()A. B. C. D.9.在△ABC中,若=0,則∠C的度數(shù)是()A.45° B.60° C.75° D.105°10.如圖所示的幾何體,上下部分均為圓柱體,其左視圖是()A. B. C. D.11.下列運算正確的是()A.6-3=3B.-32=﹣3C.a?a2=a2D.(2a12.tan30°的值為()A.12 B.32 C.3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知⊙O1、⊙O2的半徑分別為2和5,圓心距為d,若⊙O1與⊙O2相交,那么d的取值范圍是_________.14.如圖,AB為⊙O的直徑,弦CD⊥AB于點E,已知CD=6,EB=1,則⊙O的半徑為_____.15.如圖,AB為⊙O的直徑,C、D為⊙O上的點,.若∠CAB=40°,則∠CAD=_____.16.因式分解:.17.如圖,已知CD是Rt△ABC的斜邊上的高,其中AD=9cm,BD=4cm,那么CD等于_______cm.18.如圖,小強和小華共同站在路燈下,小強的身高EF=1.8m,小華的身高MN=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是___.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)4×100米拉力賽是學校運動會最精彩的項目之一.圖中的實線和虛線分別是初三?一班和初三?二班代表隊在比賽時運動員所跑的路程y(米)與所用時間x(秒)的函數(shù)圖象(假設每名運動員跑步速度不變,交接棒時間忽略不計).問題:(1)初三?二班跑得最快的是第接力棒的運動員;(2)發(fā)令后經過多長時間兩班運動員第一次并列?20.(6分)全民健身運動已成為一種時尚,為了解揭陽市居民健身運動的情況,某健身館的工作人員開展了一項問卷調查,問卷內容包括五個項目:A:健身房運動;B:跳廣場舞;C:參加暴走團;D:散步;E:不運動.以下是根據(jù)調查結果繪制的統(tǒng)計圖表的一部分,運動形式ABCDE人數(shù)請你根據(jù)以上信息,回答下列問題:接受問卷調查的共有人,圖表中的,.統(tǒng)計圖中,類所對應的扇形的圓心角的度數(shù)是度.揭陽市環(huán)島路是市民喜愛的運動場所之一,每天都有“暴走團”活動,若某社區(qū)約有人,請你估計一下該社區(qū)參加環(huán)島路“暴走團”的人數(shù).21.(6分)如圖是東方貨站傳送貨物的平面示意圖,為了提高安全性,工人師傅打算減小傳送帶與地面的夾角,由原來的45°改為36°,已知原傳送帶BC長為4米,求新傳送帶AC的長及新、原傳送帶觸地點之間AB的長.(結果精確到0.1米)參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.41422.(8分)小明準備用一塊矩形材料剪出如圖所示的四邊形ABCD(陰影部分),做成要制作的飛機的一個機翼,請你根據(jù)圖中的數(shù)據(jù)幫小明計算出CD的長度.(結果保留根號).23.(8分)反比例函數(shù)的圖象經過點A(2,3).(1)求這個函數(shù)的解析式;(2)請判斷點B(1,6)是否在這個反比例函數(shù)的圖象上,并說明理由.24.(10分)如圖,在中,,垂足為D,點E在BC上,,垂足為,試判斷DG與BC的位置關系,并說明理由.25.(10分)已知反比例函數(shù)的圖象經過三個點A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.(1)當y1﹣y2=4時,求m的值;(2)如圖,過點B、C分別作x軸、y軸的垂線,兩垂線相交于點D,點P在x軸上,若三角形PBD的面積是8,請寫出點P坐標(不需要寫解答過程).26.(12分)某自動化車間計劃生產480個零件,當生產任務完成一半時,停止生產進行自動化程序軟件升級,用時20分鐘,恢復生產后工作效率比原來提高了,結果完成任務時比原計劃提前了40分鐘,求軟件升級后每小時生產多少個零件?27.(12分)對于某一函數(shù)給出如下定義:若存在實數(shù)p,當其自變量的值為p時,其函數(shù)值等于p,則稱p為這個函數(shù)的不變值.在函數(shù)存在不變值時,該函數(shù)的最大不變值與最小不變值之差q稱為這個函數(shù)的不變長度.特別地,當函數(shù)只有一個不變值時,其不變長度q為零.例如:下圖中的函數(shù)有0,1兩個不變值,其不變長度q等于1.(1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;(2)函數(shù)y=2x2-bx.①若其不變長度為零,求b的值;②若1≤b≤3,求其不變長度q的取值范圍;(3)記函數(shù)y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G2,函數(shù)G的圖象由G1和G2兩部分組成,若其不變長度q滿足0≤q≤3,則m的取值范圍為.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】分析:直接利用二次函數(shù)圖象的開口方向以及圖象與x軸的交點,進而分別分析得出答案.詳解:①∵二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,且開口向下,∴x=1時,y=a+b+c,即二次函數(shù)的最大值為a+b+c,故①正確;②當x=﹣1時,a﹣b+c=0,故②錯誤;③圖象與x軸有2個交點,故b2﹣4ac>0,故③錯誤;④∵圖象的對稱軸為x=1,與x軸交于點A、點B(﹣1,0),∴A(3,0),故當y>0時,﹣1<x<3,故④正確.故選B.點睛:此題主要考查了二次函數(shù)的性質以及二次函數(shù)最值等知識,正確得出A點坐標是解題關鍵.2、D【解題分析】解:∵-1<-1<0<2,∴最小的是-1.故選D.3、B【解題分析】

利用配方法求二次函數(shù)最值的方法解答即可.【題目詳解】∵s=20t-5t2=-5(t-2)2+20,∴汽車剎車后到停下來前進了20m.故選B.【題目點撥】此題主要考查了利用配方法求最值的問題,根據(jù)已知得出頂點式是解題關鍵.4、A【解題分析】

根據(jù)絕對值的性質進行求解即可得.【題目詳解】∵|-x|=-x,又|-x|≥1,∴-x≥1,即x≤1,即x是非正數(shù),故選A.【題目點撥】本題考查了絕對值的性質,熟練掌握絕對值的性質是解題的關鍵.絕對值的性質:一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);1的絕對值是1.5、C【解題分析】分析:(1)將點A(0,2)代入求出a的值;分別求出x=9和x=18時的函數(shù)值,再分別與2.43、0比較大小可得.詳解:根據(jù)題意,將點A(0,2)代入得:36a+2.6=2,解得:∴y與x的關系式為當x=9時,∴球能過球網,當x=18時,∴球會出界.故選C.點睛:考查二次函數(shù)的應用題,求范圍的問題,可以利用臨界點法求出自變量的值,根據(jù)題意確定范圍.6、A【解題分析】

根據(jù):如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;在平面內,把一個圖形繞著某個點旋轉180°,如果旋轉后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.逐個按要求分析即可.【題目詳解】選項A,是軸對稱圖形,不是中心對稱圖形,故可以選;選項B,是軸對稱圖形,也是中心對稱圖形,故不可以選;選項C,不是軸對稱圖形,是中心對稱圖形,故不可以選;選項D,是軸對稱圖形,也是中心對稱圖形,故不可以選.故選A【題目點撥】本題考核知識點:軸對稱圖形和中心對稱圖形.解題關鍵點:理解軸對稱圖形和中心對稱圖形定義.

錯因分析容易題.失分的原因是:沒有掌握軸對稱圖形和中心對稱圖形的定義.

7、C【解題分析】

先求出800米跑不合格的百分率,再根據(jù)用樣本估計總體求出估值.【題目詳解】400×人.故選C.【題目點撥】考查了頻率分布直方圖,以及用樣本估計總體,關鍵是從上面可得到具體的值.8、C【解題分析】

俯視圖是從上面所看到的圖形,可根據(jù)各幾何體的特點進行判斷.【題目詳解】A.圓錐的俯視圖是圓,中間有一點,故本選項不符合題意,B.幾何體的俯視圖是長方形,故本選項不符合題意,C.三棱柱的俯視圖是三角形,故本選項符合題意,D.圓臺的俯視圖是圓環(huán),故本選項不符合題意,故選C.【題目點撥】此題主要考查了由幾何體判斷三視圖,正確把握觀察角度是解題關鍵.9、C【解題分析】

根據(jù)非負數(shù)的性質可得出cosA及tanB的值,繼而可得出A和B的度數(shù),根據(jù)三角形的內角和定理可得出∠C的度數(shù).【題目詳解】由題意,得

cosA=,tanB=1,

∴∠A=60°,∠B=45°,

∴∠C=180°-∠A-∠B=180°-60°-45°=75°.

故選C.10、C【解題分析】試題分析:∵該幾何體上下部分均為圓柱體,∴其左視圖為矩形,故選C.考點:簡單組合體的三視圖.11、D【解題分析】試題解析:A.6與3不是同類二次根式,不能合并,故該選項錯誤;B.(-3)2C.a?aD.(2a故選D.12、D【解題分析】

直接利用特殊角的三角函數(shù)值求解即可.【題目詳解】tan30°=33,故選:D【題目點撥】本題考查特殊角的三角函數(shù)的值的求法,熟記特殊的三角函數(shù)值是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3<d<7【解題分析】

若兩圓的半徑分別為R和r,且R≥r,圓心距為d:相交,則R-r<d<R+r,從而得到圓心距O1O2的取值范圍.【題目詳解】∵⊙O1和⊙O2的半徑分別為2和5,且兩圓的位置關系為相交,∴圓心距O1O2的取值范圍為5-2<d<2+5,即3<d<7.故答案為:3<d<7.【題目點撥】本題考查的知識點是圓與圓的位置關系,解題的關鍵是熟練的掌握圓與圓的位置關系.14、1【解題分析】

解:連接OC,∵AB為⊙O的直徑,AB⊥CD,∴CE=DE=CD=×6=3,設⊙O的半徑為xcm,則OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=1,∴⊙O的半徑為1,故答案為1.【題目點撥】本題利用了垂徑定理和勾股定理求解,熟練掌握并應用定理是解題的關鍵.15、25°【解題分析】

連接BC,BD,根據(jù)直徑所對的圓周角是直角,得∠ACB=90°,根據(jù)同弧或等弧所對的圓周角相等,得∠ABD=∠CBD,從而可得到∠BAD的度數(shù).【題目詳解】如圖,連接BC,BD,∵AB為⊙O的直徑,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵,∴∠ABD=∠CBD=∠ABC=25°,∴∠CAD=∠CBD=25°.故答案為25°.【題目點撥】本題考查了圓周角定理及直徑所對的圓周角是直角的知識點,解題的關鍵是正確作出輔助線.16、;【解題分析】

根據(jù)所給多項式的系數(shù)特點,可以用十字相乘法進行因式分解.【題目詳解】x2﹣x﹣12=(x﹣4)(x+3).故答案為(x﹣4)(x+3).17、1【解題分析】

利用△ACD∽△CBD,對應線段成比例就可以求出.【題目詳解】∵CD⊥AB,∠ACB=90°,∴△ACD∽△CBD,∴,∴,∴CD=1.【題目點撥】本題考查了相似三角形的性質和判定,熟練掌握相似三角形的判定方法是關鍵.18、4m【解題分析】

設路燈的高度為x(m),根據(jù)題意可得△BEF∽△BAD,再利用相似三角形的對應邊正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因為兩人相距4.7m,可得到關于x的一元一次方程,然后求解方程即可.【題目詳解】設路燈的高度為x(m),∵EF∥AD,∴△BEF∽△BAD,∴EFAD即1.8x解得:DF=x﹣1.8,∵MN∥AD,∴△CMN∽△CAD,∴MNAD即1.5x解得:DN=x﹣1.5,∵兩人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路燈AD的高度是4m.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)1;(2)發(fā)令后第37秒兩班運動員在275米處第一次并列.【解題分析】

(1)直接根據(jù)圖象上點橫坐標可知道最快的是第1接力棒的運動員用了12秒跑完100米;(2)分別利用待定系數(shù)法把圖象相交的部分,一班,二班的直線解析式求出來后,聯(lián)立成方程組求交點坐標即可.【題目詳解】(1)從函數(shù)圖象上可看出初三?二班跑得最快的是第1接力棒的運動員用了12秒跑完100米;(2)設在圖象相交的部分,設一班的直線為y1=kx+b,把點(28,200),(40,300)代入得:解得:k=,b=﹣,即y1=x﹣,二班的為y2=k′x+b′,把點(25,200),(41,300),代入得:解得:k′=,b′=,即y2=x+聯(lián)立方程組,解得:,所以發(fā)令后第37秒兩班運動員在275米處第一次并列.【題目點撥】本題考查了利用一次函數(shù)的模型解決實際問題的能力和讀圖能力.要先根據(jù)題意列出函數(shù)關系式,再代數(shù)求值.解題的關鍵是要分析題意根據(jù)實際意義準確的列出解析式,再把對應值代入求解,并會根據(jù)圖示得出所需要的信息.要掌握利用函數(shù)解析式聯(lián)立成方程組求交點坐標的方法.20、(1)150、45、36;(2)28.8°;(3)450人【解題分析】

(1)由B項目的人數(shù)及其百分比求得總人數(shù),根據(jù)各項目人數(shù)之和等于總人數(shù)求得m=45,再用D項目人數(shù)除以總人數(shù)可得n的值;

(2)360°乘以A項目人數(shù)占總人數(shù)的比例可得;

(3)利用總人數(shù)乘以樣本中C人數(shù)所占比例可得.【題目詳解】解:(1)接受問卷調查的共有30÷20%=150人,m=150-(12+30+54+9)=45,∴n=36,

故答案為:150、45、36;(2)A類所對應的扇形圓心角的度數(shù)為故答案為:28.8°;(3)(人)答:估計該社區(qū)參加碧沙崗“暴走團”的大約有450人【題目點撥】本題考查的是統(tǒng)計表和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?1、新傳送帶AC的長為1.8m,新、原傳送帶觸地點之間AB的長約為1.2m.【解題分析】

根據(jù)題意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的長,再表示出AD的長,進而求出AB的長.【題目詳解】解:如圖,作CD⊥AB于點D,由題意可得:∠A=36°,∠CBD=15°,BC=1.在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2.∵∠CBD=15°,∴BD=CD=2.在Rt△ACD中,sinA=,tanA=,∴AC=≈≈1.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.111≈3.87﹣2.83=1.21≈1.2.答:新傳送帶AC的長為1.8m,新、原傳送帶觸地點之間AB的長約為1.2m.【題目點撥】本題考查了坡度坡角問題,正確構建直角三角形再求出BD的長是解題的關鍵.22、CD的長度為17﹣17cm.【解題分析】

在直角三角形中用三角函數(shù)求出FD,BE的長,而FC=AE=AB+BE,而CD=FC-FD,從而得到答案.【題目詳解】解:由題意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=,∴BE=ECtan30°=51×=17(cm);∴CF=AE=34+BE=(34+17)cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,則CD=FC﹣FD=34+17﹣51=17﹣17,答:CD的長度為17﹣17cm.【題目點撥】本題主要考查了在直角三角形中三角函數(shù)的應用,解本題的要點在于求出FC與FD的長度,即可求出答案.23、(1)y=(2)點B(1,6)在這個反比例函數(shù)的圖象上【解題分析】

(1)設反比例函數(shù)的解析式是y=,只需把已知點的坐標代入,即可求得函數(shù)解析式;(2)根據(jù)反比例函數(shù)圖象上點的坐標特征進行判斷.【題目詳解】設反比例函數(shù)的解析式是,則,得.則這個函數(shù)的表達式是;因為,所以點不在函數(shù)圖象上.【題目點撥】本題考查了待定系數(shù)法求反比例函數(shù)解析式:設出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=(k為常數(shù),k≠0);把已知條件(自變量與函數(shù)的對應值)代入解析式,得到待定系數(shù)的方程;解方程,求出待定系數(shù);寫出解析式.也考查了反比例函數(shù)圖象上點的坐標特征.24、DG∥BC,理由見解析【解題分析】

由垂線的性質得出CD∥EF,由平行線的性質得出∠2=∠DCE,再由已知條件得出∠1=∠DCE,即可得出結論.【題目詳解】解:DG∥BC,理由如下:

∵CD⊥AB,EF⊥AB,

∴CD∥EF,

∴∠2=∠DCE,

∵∠1=∠2,

∴∠1=∠DCE,

∴DG∥BC.【題目點撥】本題考查平行線的判定與性質;熟練掌握平行線的判定與性質,證明∠1=∠DCE是解題關鍵.25、(1)m=1;(2)點P坐標為(﹣2m,1)或(6m,1).【解題分析】

(1)先根據(jù)反比例函數(shù)的圖象經過點A(﹣4,﹣3),利用待定系數(shù)法求出反比例函數(shù)的解析式為y=12x,再由反比例函數(shù)圖象上點的坐標特征得出y1=122m=6m,y2=126m=2m,然后根據(jù)y1﹣y2(2)設BD與x軸交于點E.根據(jù)三角形PBD的面積是8列出方程12?4【題目詳解】解:(1)設反比例函數(shù)的解析式為y=kx∵反比例函數(shù)的圖象經過點A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函數(shù)的解析式為y=12x∵反比例函數(shù)的圖象經過點B(2m,y1),C(6m,y2),∴y1=122m=6m,y2=126m∵y1﹣y2=4,∴6m﹣2∴m=1,經檢驗,m=1是原方程的解,故m的值是1;(2)設BD與x軸交于點E,∵點B(2m,6m),C(6m,2∴D(2m,2m),BD=6m﹣2m∵三角形PBD的面積是8,∴12∴12?4∴PE=4m,∵E(2m,1),點P在x軸上,∴點P坐標為(﹣2m,1)或(6m,1).【題目點撥】本題考查了待定系數(shù)法求反比例函數(shù)的解析式,反比例函數(shù)圖象上點的坐標特征以及三角形的面積,正確求出雙曲線的解析式是解題的關鍵.26、軟件升級后每小時生產1個零件.【解題分析】分析:設軟件升級前每小時生產x個零件,則軟件升級后每小時生產(1+)x個零件,根據(jù)工作時間=工作總量÷工作效率結合軟件升級后節(jié)省的時間,即可得出關于x的分式方程,解之經檢驗后即可得出結論.詳解:設軟件升級前每小時生產x個零件,則軟件升級后每小時生產(1+)x個零件,根據(jù)題意得:,解得:x=60,經檢驗,x=60是原方程的解,且符合題意,∴(1+)x=1.答:軟件升級后每小時生產1個零件.點睛:本題考查了分式方程的應用,找準等量關系,正確列出分式方程是解題的關鍵.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論