變形巖石應(yīng)變分析_第1頁(yè)
變形巖石應(yīng)變分析_第2頁(yè)
變形巖石應(yīng)變分析_第3頁(yè)
變形巖石應(yīng)變分析_第4頁(yè)
變形巖石應(yīng)變分析_第5頁(yè)
已閱讀5頁(yè),還剩50頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第四章

變形巖石應(yīng)變分析基礎(chǔ)1本章主要內(nèi)容

變形、位移和應(yīng)變的概念旋轉(zhuǎn)應(yīng)變與非旋轉(zhuǎn)應(yīng)變遞進(jìn)變形、全量應(yīng)變與增量應(yīng)變巖石的變形階段2變形和位移

變形、位移和應(yīng)變的概念

當(dāng)?shù)貧ぶ袔r石體受到應(yīng)力作用后,其內(nèi)部各質(zhì)點(diǎn)經(jīng)受了一系列的位移,從而使巖石體的初始形狀、方位或位置發(fā)生了改變,這種改變就稱為變形。

變形3

位移物體內(nèi)部各質(zhì)點(diǎn)的位移是通過其初始位置和終止位置的變化來(lái)表示,質(zhì)點(diǎn)的初始位置和終止位置的連線叫位移矢量。

從幾何學(xué)角度來(lái)看,研究物體的變形需要比較物體內(nèi)各質(zhì)點(diǎn)的位置在變形前后的相對(duì)變化,為此,我們引入位移的概念。4平移旋轉(zhuǎn)(虛線為可能的路徑)形變體變P0P1P0P0P0P1P1P1巖石發(fā)生變形的四種形式5平移轉(zhuǎn)動(dòng)形態(tài)變化或形變

體積變化或體變變形物體內(nèi)部各質(zhì)點(diǎn)相對(duì)位置無(wú)變化**變形概念的進(jìn)一步理解使物體內(nèi)部各質(zhì)點(diǎn)之間發(fā)生了相對(duì)位移6應(yīng)變:巖石變形的度量,即巖石形變和體變程度的定量表示;物體變形時(shí)內(nèi)部各質(zhì)點(diǎn)的相對(duì)位置發(fā)生變化;變化的兩種方式:線段長(zhǎng)度的變化,稱為線應(yīng)變;兩線間的角度變化,稱為剪應(yīng)變;一般通過線應(yīng)變和剪應(yīng)變定量說(shuō)明物體的變形程度

應(yīng)變7DeformationandStrain8Deformationdescribesthecollectivedisplacementsofpointsinabody;inotherwords,itdescribesthecompletetransformationfromtheinitialtothefinalgeometryofabody.Thischangecanincludeatranslation

(movementfromoneplacetotheother),arotation

(spinaroundanaxis),andadistortion

(changeinshape).Strain

describesthechangesofpointsinabodyrelativetoeachother;so,itdescribesthedistortionofabody.9DeformationandStrainSo,strainisacomponentofdeformationandthereforenotasynonym.Inessence,wehavedefineddeformationandstrainrelativetoaframeofreference.Deformationdescribesthecompletedisplacementfieldofpointsinabodyrelativetoanexternalreferenceframe,suchastheedgesofthepaperonwhichFigure4.2isdrawn.Strain,ontheotherhand,describesthedisplacementfieldofpointsrelativetoeachother.Thisrequiresareferenceframewithinthebody,aninternalreferenceframe,liketheedgesofthesquare.Whentherotationanddistortioncomponentsarezero,weonlyhaveatranslation.Thistranslationisformallycalledrigid-bodytranslation,becausethebodyundergoesnoshapechangewhileitmoves.Whenthetranslationanddistortioncomponentsarezero,wehaveonlyrotationofthebody.Byanalogytotranslation,wecallthiscomponentrigid-bodyrotation,orsimplyspin;Whentranslationandspinarebothzero,thebodyundergoesdistortion;thiscomponentisdescribedbystrain.Summary10Deformationisdescribedby:1.Rigid-bodytranslation(ortranslation)2.Rigid-bodyrotation(orspin)3.Strain4.Volumechange(ordilation)

應(yīng)變的度量——線應(yīng)變——角應(yīng)變——剪切應(yīng)變11伸長(zhǎng)度(Extension):?jiǎn)挝婚L(zhǎng)度的改變量

e=(l

-l0)/l0

長(zhǎng)度比(Stretch):變形后的長(zhǎng)度與原長(zhǎng)之比

S=l

/l0=1+e平方長(zhǎng)度比

λ=

(1+e)2倒數(shù)平方長(zhǎng)度比

λ′=1/λ桿件的簡(jiǎn)單拉伸變形線應(yīng)變是物體內(nèi)某方向單位長(zhǎng)度的改變量。設(shè)一原始長(zhǎng)度為l0的桿件變形后長(zhǎng)度為l,則其線應(yīng)變e為:一般把伸長(zhǎng)時(shí)的線應(yīng)變?nèi)≌?,縮短時(shí)的線應(yīng)變?nèi)∝?fù)值。

線應(yīng)變12物體變形時(shí),任意兩條直線間的夾角一般會(huì)發(fā)生變化。初始相互垂直的線,變形后一般不再垂直,這種直角的改變量ψ[sai]

稱為角剪應(yīng)變。剪應(yīng)變:角剪應(yīng)變的正切

γ=tgψψγ

剪應(yīng)變13AngularShear:

MeasureofChangeinAnglesbetweenLines14Todeterminetheangularshearalongagivenline,L,inastrainedbody,itisessentialtoidentifyalinethatwasoriginallyperpendiculartoL.AngularsheardescribesthedepartureofthislinefromitsperpendicularrelationwithL(leftfigure).Thefulldescriptionrequiresasign(positiveequalscounterclockwise;negativeequalsclockwise)andamagnitudeexpressedindegrees.Signconventionsforangularshear.(A)DeterminationoftheangularshearoflineArequiresidentifyingaline,inthiscaseB,whichwasoriginallyperpendiculartoA.TheoriginalorientationoflineBrelativetolineAisshownbythedashline.AngularshearoflineAistheshiftinangleofBoriginalversusBfinal.Becausetheshiftisclockwise,theangularshearisnegative(-).(B)InthisexampletheangularshearoflineAis150.Acounterclockwiseshiftisdenotedbyapositive(+)sign.15Blockcontainingreferencecirclesandlines,beforedeformation.Shapeoftheblockafterdeformation.Originalreferencecirclesnowareellipses.Theoriginallymutuallyperpendicularreferencelineshaveallchangedlength,andmosthavechangedorientationaswell.Angularshearalonganylinecanbedeterminedbyfirstidentifyingalineoriginallyperpendiculartoit,andthenmeasuringtheangularshift.Remember,counterclockwiseshiftsarepositive(+);clockwiseshiftsarenegative(-).Forellipsecd(seeFigureB),theangularshearalongcis+30andtheangularshearalongdis-30(seeFigureC).Forellipseed,(seeFigureB),theangularshearalongeis+38,andtheangularshearalongfis-38(seeFigureC).Finally,forellipsegh(seeFigureB)theangularshearalonggis+20,andtheangularshearalonghis-20.ShearStrain16Letusconsiderhowpointsonalinemoveasaresponsetoangularshear.Points1to4onlineA0inFigure2.52Aaretranslatedbyvariousdistancesasaresultoftherotationofthelineonwhichtheyreside.LineA0isthelocusofpoints1to4.LineAfisthelocusofthesamepointsintheirdeformedlocations(Figure2.52B).Sinceangularshearwassystematicanddeformationwashomogeneous,lineAfremainsstraight.Points1to4moveadistancethatisdirectlyrelatedtotheangularshearandtothedistanceofeachpointabovethepointofintersectionwiththecomplementaryline.Ifthedistanceofeachpointabovetheintersectionisdenotedasy(Figure2.52B),thehorizontaldistanceoftranslationcanbefoundasfollows(Ramsay,1967):Thustanψisanotherwayofdescribingrelativeshiftsinorientationsoflinesthatwereoriginallyperpendicular.Itiscalledshearstrain,symbolizedbytheGreeklettergamma(γ),17Shearstrainalongaline(i.e.,alongagivendirection)maybepositiveornegative,dependingonthesenseofrotation(deflection)ofthelineoriginallyperpendiculartoit.Therangeofshearstrainiszerotoinfinity.FortheexampleshowninFigure2.52B,theshearstrainoflineBfis-tan30,or-0.58.TheshearstrainoflineAfis+tan30,or10.58.18均勻應(yīng)變和應(yīng)變橢球體

HOMOGENEOUSSTRAINANDTHESTRAIN

ELLIPSOID19Straindescribesthedistortionofabodyinresponsetoanappliedforce.Strainishomogeneouswhenanytwoportionsofthebodythatweresimilarinformandorientationbeforearesimilarinformandorientationafterstrain.Wedefinehomogeneousstrainbyitsgeometricconsequences:1.Originallystraightlinesremainstraight.2.Originallyparallellinesremainparallel.3.Circlesbecomeellipses;inthreedimensions,spheresbecomeellipsoids.Whenoneormoreofthesethreerestrictionsdoesnotapply,wecallthestrainheterogeneous(Figure4.3c).Becauseconditions(1)and(2)aremaintainedduringthedeformationcomponentsoftranslationandrotation,deformationishomogeneousbydefinitionifthestrainishomogeneous.strainellipseandstrainellipsoid20Inahomogeneouslystrained,two-dimensionalbodytherewillbeatleasttwomateriallinesthatdonotrotaterelativetoeachother,meaningthattheirangleremainsthesamebeforeandafterstrain.Whatisamaterialline?Amateriallineconnectsfeatures,suchasanarrayofgrains,thatarerecognizablethroughoutabody’sstrainhistory.ThebehavioroffourmateriallinesisillustratedinFigure4.4forthetwo-dimensionalcase,inwhichacirclechangesintoanellipse.Inhomogeneousstrain,twoorientationsofmateriallinesremainperpendicularbeforeandafterstrain.Thesetwomateriallinesformtheaxesofanellipsethatiscalledthestrainellipse.Analogously,inthreedimensionswehavethreemateriallinesthatremainperpendicularafterstrainandtheydefinetheaxesofanellipsoid,thestrainellipsoid.

Thelinesthatareperpendicularbeforeandafterstrainarecalledtheprincipalstrainaxes.應(yīng)變橢圓:二維變形中初始單位圓經(jīng)變形形成的橢圓應(yīng)變主軸:應(yīng)變橢圓的長(zhǎng)、短軸方向,該方向上只有線應(yīng)變而無(wú)剪切應(yīng)變。最大應(yīng)變與最小應(yīng)變:應(yīng)變主軸方向上的線應(yīng)變,即應(yīng)變橢圓長(zhǎng)、短軸半徑的長(zhǎng)度,其值分別為λ11/2和λ21/2應(yīng)變橢圓軸比:應(yīng)變橢圓的長(zhǎng)、短軸比Rs=λ11/2/λ21/2應(yīng)變橢圓與應(yīng)變橢球21應(yīng)變橢球:三維變形中初始單位球體經(jīng)變形形成的橢球應(yīng)變主軸:應(yīng)變橢球的三主軸方向。分別稱為最大、中間和最小應(yīng)變主軸。記做λ1(X)

,λ2(Y),λ3(Z)

長(zhǎng)度分別為X=λ11/2,Y=λ21/2,Z=λ31/2應(yīng)變主平面:應(yīng)變橢球上包含任意兩個(gè)應(yīng)變主軸的切面。

XY,XZ,YZ面,λ1(X)λ2

(Y)λ3

(Z)22圓切面:應(yīng)變橢球上各個(gè)方向線應(yīng)變均相等的兩個(gè)圓形切面。它們相交于中間軸Y。平面應(yīng)變:應(yīng)變橢球中間軸(λ2,Y)不發(fā)生線應(yīng)變的應(yīng)變,其中間軸Y(λ21/2)=1。無(wú)伸縮面(無(wú)線應(yīng)變面):平面應(yīng)變橢球的圓切面23主軸、主平面的地質(zhì)意義:

X方向-反映在礦物的定向排列上(拉伸線理)

XY面-壓扁面:代表褶皺的軸面或劈理面的方位

YZ面—張性面:代表了張性構(gòu)造的方位(張節(jié)理)24應(yīng)變橢球體形態(tài)類型及其幾何表示法a=X/Y,b=Y/Z,

各種應(yīng)變橢球體的形態(tài)可以用不同的圖解來(lái)表示,常用的是弗林(Flinn)圖解,這是一種用主應(yīng)變比a及b作為坐標(biāo)軸的二維圖解。abK=0K=∞任意一種形態(tài)的橢球體都可在圖中表示為一點(diǎn),如圖中的P點(diǎn),該點(diǎn)的位置就反映了應(yīng)變橢球體的形態(tài)和應(yīng)變強(qiáng)度。橢球體的形態(tài)用參數(shù)k表示,k=tgα=(a-1)/(b-1)K值的物理意義:相當(dāng)于P點(diǎn)到原點(diǎn)連線的斜率。25k=0:軸對(duì)稱壓縮,鐵餅型;1>k>0:壓扁型;k=1:平面應(yīng)變∞>k>1:拉伸應(yīng)變;k=∞:?jiǎn)屋S拉伸,雪茄型三維應(yīng)變的弗林(Flinn)圖解

在形變時(shí)體積不變的條件下,依據(jù)k值可分為五種形態(tài)類型的應(yīng)變橢球體26PancakeshapedellipsoidleadstoStectonites(strongschistosity,nolineation),cigarshapedellipsoidleadstoLtectonites(stronglineation,noschistosity).L=Stectonitesareproducedbyplanestrain.Whenstrainishomogeneousittransformsanimaginarysphereintoanellipsoid(3perpendicularaxesλ1≥λ2≥λ3)calledtheFiniteStrainEllipsoidfromwhichitiseasytocharacterizethestyleofstrainanditsintensity.Whenstrainisheterogeneousweare"stuffed"asthecharacterizationofa"potatoid"isextremelydifficult.Fortunatelyitisalwayspossibletodefineascaleatwhichstrainis,infirstapproximation,homogeneous.Thestrain,asgeometricallycharacterizedbyanellipsoid,issoeasytoassessthatonlytwoparametersKandDcompletelydefinethestyleofstrain(shapeofellipsoid)andtheamountofstrain(ellipsoidicity,iehowfaritisfromaperfectsphere)respectively.Asshownontherightthesetwoparametersarebothfunctionoftheratioλ1/λ2andλ2/λ3.KandDdonotrequestknowledgeoftheradiusoftheinitialsphereonlyknowledgeoftheprincipalaxesofthefinitestrainellipsoid.三維應(yīng)變的弗林(Flinn)圖解參考注釋27有限應(yīng)變(總應(yīng)變):物體變形最終狀態(tài)與初始狀態(tài)對(duì)比發(fā)生的變化;遞進(jìn)變形:物體從初始狀態(tài)變化到最終狀態(tài)的過程是一個(gè)由許多次微量應(yīng)變的逐次疊加過程,該過程即為遞進(jìn)變形;增量應(yīng)變:遞進(jìn)變形中某一瞬間正在發(fā)生的小應(yīng)變叫增量應(yīng)變;無(wú)限小應(yīng)變:如果所取的變形瞬間非常微小,其間發(fā)生的微量應(yīng)變?yōu)闊o(wú)限小應(yīng)變。

遞進(jìn)變形28COAXIALANDNON-COAXIAL

STRAINACCUMULATION29Inthegeneralcaseforstrain,theprincipalincrementalstrainaxesarenotnecessarilythesamethroughoutthestrainhistory.Theprincipalincrementalstrainaxesrotaterelativetothefinitestrainaxes,ascenariothatiscallednon-coaxialstrainaccumulation.Thecaseinwhichthesamemateriallinesremaintheprincipalstrainaxesateachincrementiscalledcoaxialstrainaccumulation.

So,withcoaxialstrainaccumulationthereisnorotationoftheincrementalstrainaxeswithrespecttothefinitestrainaxes.Thecaseinwhichthesamemateriallinesremaintheprincipalstrainaxesateachincrementiscalledcoaxialstrainaccumulation.Simpleshear,pureshearandgeneralshear30Thecomponentdescribingtherotationofmateriallineswithrespecttotheprincipalstrainaxesiscalledtheinternalvorticity,whichisameasureofthedegreeofnon-coaxiality.Ifthereiszerointernalvorticity,thestrainhistoryiscoaxial(asinFigure4.6b),whichissometimescalledpureshear.Thenon-coaxialstrainhistoryinFigure4.6adescribesthecaseinwhichthedistanceperpendiculartotheshearplane(orthethicknessofourstackofcards)remainsconstant;thisisalsoknownassimpleshear.Inreality,acombinationofsimpleshearandpureshearoccurs,whichwecallgeneralshear(orgeneralnon-coaxialstrainaccumulation;Figure4.7).kinematicvorticitynumber31Internalvorticityisquantifiedbythekinematicvorticitynumber,Wk,whichrelatestheangularvelocityandthestretchingrateofmateriallines.ForpureshearWk=0(Figure4.8a),forgeneralshear0<Wk<1(Figure4.8b),andforsimpleshearWk=1(Figure4.8c).Rigid-bodyrotationorspincanalsobedescribedbythekinematicvorticitynumber(inthiscase,Wk=∞;Figure4.8d),butrememberthatthisrotationalcomponentofdeformationisdistinctfromtheinternalvorticityofstrain.32UsingFigure4.6asanexample,thedeformationhistoryshowninFigure4.6arepresentsnon-coaxial,nonrotationaldeformation.Theorientationoftheshearplanedoesnotrotatebetweeneachstep,buttheincrementalstrainaxesdorotate.ThestrainhistoryinFigure4.6brepresentscoaxial,nonrotationaldeformation,becausetheincrementalaxesremainparallel.Typesofstrain33共軸遞進(jìn)變形(無(wú)旋轉(zhuǎn)變形):在遞進(jìn)變形過程中,各增量應(yīng)變橢球體主軸始終與有限應(yīng)變橢球體主軸一致,即在變形過程中有限應(yīng)變主軸方向保持不變。非共軸遞進(jìn)變形(旋轉(zhuǎn)變形):在遞進(jìn)變形過程中,增量應(yīng)變橢球體主軸與有限應(yīng)變橢球體主軸不一致,即在變形過程中有限應(yīng)變主軸方向發(fā)生變化。共軸與非共軸遞進(jìn)變形34有旋變形和無(wú)旋變形根據(jù)應(yīng)變主軸方向的物質(zhì)線在變形前后平行與否,可把變形分為有旋變形和無(wú)旋變形。簡(jiǎn)單剪切(單剪)純剪單剪與純剪應(yīng)變有旋變形的的

1和3質(zhì)點(diǎn)線方向?qū)?huì)改變。最典型的情況是簡(jiǎn)單剪切,體變?yōu)榱愕钠矫鎽?yīng)變;是由物質(zhì)中質(zhì)點(diǎn)沿著彼此平行的方向相對(duì)滑動(dòng)而成。無(wú)旋變形,

1和3質(zhì)點(diǎn)線方向在變形前后保持不變。如果體積不變而且2=0,則稱為純剪切。35共軸與非共軸遞進(jìn)變形中應(yīng)變主軸物質(zhì)(質(zhì)點(diǎn))線的變化共軸變形中,組成應(yīng)變主軸的物質(zhì)(質(zhì)點(diǎn))線不變非共軸變形中,組成應(yīng)變主軸的質(zhì)點(diǎn)線是不斷變化的36純剪切:一種均勻共軸變形,應(yīng)變橢球體中主軸質(zhì)點(diǎn)線在變形前后保持不變且具有同一方位。簡(jiǎn)單剪切:一種無(wú)體應(yīng)變的均勻非共軸變形,由物體質(zhì)點(diǎn)沿彼此平行的方向相對(duì)滑動(dòng)形成。純剪切與簡(jiǎn)單剪切37在簡(jiǎn)單剪切中,與剪切方向平行的方向上無(wú)線應(yīng)變,三維上剪切面上無(wú)應(yīng)變,所以Y軸為無(wú)應(yīng)變軸,故此簡(jiǎn)單剪切屬于平面應(yīng)變。另外剪切帶的厚度也保持不變。剪切面剪切方向剪切帶厚度38STRAINPATH39Themeasureofstrainthatcomparestheinitialandfinalconfigurationiscalledthefinitestrain,identifiedbysubscriptf,whichisindependentofthedetailsofthestepstowardthefinalconfiguration.Whentheseintermediatestrainstepsaredeterminedtheyarecalledincrementalstrains,identifiedbysubscripti.(1)持續(xù)拉伸區(qū)(2)先壓縮后拉伸,變形后長(zhǎng)度超過原長(zhǎng)(3)先壓縮后拉伸,變形后長(zhǎng)度未達(dá)到原長(zhǎng)(4)持續(xù)壓縮區(qū)應(yīng)變歷史及應(yīng)變橢圓分區(qū)40有限應(yīng)變:巖石變形程度的量度有限應(yīng)變(狀態(tài))的表示:應(yīng)變橢球的主軸長(zhǎng)度比(Rs)和主軸方向應(yīng)變標(biāo)志體:變形巖石中可用于測(cè)量和計(jì)算應(yīng)變狀態(tài)的標(biāo)志性物體巖石有限應(yīng)變測(cè)量(課外閱讀材料)41礫石、砂粒、氣孔、鮞粒、放射蟲、還原斑等原始形狀規(guī)則的標(biāo)志物:變形化石和變形晶體等與變形有關(guān)的小型構(gòu)造標(biāo)志物:壓力影、生長(zhǎng)礦物纖維、石香腸構(gòu)造、線理、面理、節(jié)理等已知原始形狀的其它標(biāo)志物原始為圓球或橢球的標(biāo)志體應(yīng)變標(biāo)志體

確定巖石內(nèi)的有限應(yīng)變狀態(tài)及其分布規(guī)律的一個(gè)方法,就是測(cè)量和統(tǒng)計(jì)變形巖石內(nèi)已知原始形狀的標(biāo)志物在變形后的形態(tài)變化,然后加以對(duì)比分析。

根據(jù)變形標(biāo)志物中已知長(zhǎng)度或相對(duì)長(zhǎng)度比的線性標(biāo)志物發(fā)生的長(zhǎng)度變化,可以計(jì)算伸縮線應(yīng)變。

根據(jù)兩條直線之間原始角度的變化可以計(jì)算角剪應(yīng)變和剪應(yīng)變。應(yīng)變測(cè)量概述42原理:應(yīng)變標(biāo)志體變形前為球體或某一截面上的圓,變形后為橢球體或橢圓。如礫石、鮞粒和還原斑等為球體,而海百合莖的截面為圓,它們變形后的形態(tài)代表應(yīng)變狀態(tài)1.長(zhǎng)短軸法431.尋找三軸及主平面方向;2.在XZ、XY和YZ面上測(cè)量標(biāo)志體的長(zhǎng)、短軸;3.投圖;4.求斜率得X/Z、X/Y和Y/Z。5.還可用線性回歸及最小二乘法進(jìn)行計(jì)算機(jī)處理測(cè)量步驟:44原理:應(yīng)變標(biāo)志體變形前并非球體,而是隨機(jī)分布的具有原始軸比(Ri

)的橢球體,變形后形態(tài)和長(zhǎng)軸方位均發(fā)生變化。其最終的形態(tài)(軸比,Rf

)和方位(長(zhǎng)軸方向,φ)取決于測(cè)量標(biāo)志初始軸比(Ri)、初始長(zhǎng)軸方向(θ)、及應(yīng)變橢圓軸比(Rs),關(guān)系如下:θφRiRsRf測(cè)量標(biāo)志體:礫石、鮞粒、還原斑礦物顆粒等2.Rf/φ法4550%資料線:變形前長(zhǎng)軸與應(yīng)變主軸成±45°的不同軸比的橢球變形后所在的方向與軸比。RfφRfφ46472)在透明紙上畫上左上圖的Rf和φ軸并標(biāo)上刻度,同時(shí)標(biāo)上參考方向3)測(cè)量標(biāo)志體的長(zhǎng)短軸比(Rf)及其與參考方向的夾角(φ)4)將測(cè)量數(shù)據(jù)投到透明紙上5)將帶有測(cè)量數(shù)據(jù)的透明紙蒙在如左上圖那樣的曲線圖上,使透明紙和曲線圖中的φ軸重合,對(duì)不同Rs的曲線圖逐個(gè)套用,直到找到一個(gè)曲線圖,其上的50%資料線和主軸將所有數(shù)據(jù)點(diǎn)四等分。此時(shí)該曲線圖的Rs即為測(cè)量值6)透明紙上的參考軸與曲線圖主軸的夾角即為參考軸與實(shí)際應(yīng)變主軸的夾角測(cè)量方法:1)根據(jù)應(yīng)變標(biāo)志體長(zhǎng)軸的統(tǒng)計(jì)方位,在測(cè)量面上標(biāo)一參考的應(yīng)變主軸方向。48DePaor的Rf/φ網(wǎng)49要求:應(yīng)變標(biāo)志體變形后可辨認(rèn)變形前相互垂直的標(biāo)志線。3.摩爾圓法502αα2θθψ1ψ2ψ1ψ2514.心對(duì)心法-Fry法521.Means,W.D.,1976,StressandStrain,Spring–VerlagNewYork,Inc中文譯本:《應(yīng)力與應(yīng)變》,[美]W.D.米恩斯,淮南煤炭學(xué)院譯,煤炭工業(yè)出版社出版,1980.102.Thetechniquesofmodernstructuralgeology.v.1,strainanalysis/JohnG.R...中文譯本:《現(xiàn)代構(gòu)造地質(zhì)學(xué)方法.第一卷應(yīng)變分析》徐樹桐主譯1991年,參考書籍53ADDITIONALREADING154Elliott,D.,1972.Deformationpathsinstructuralgeology.GeologicalSocietyofAmericaBulletin,83,2621–2638.Erslev,E.A.,1988.Normalizedcenter-to-centerstrainanalysisofpackedaggregates.JournalofStructuralGeology,10,201–209.Fry,N.,1979.Randompointdistributionsandstrainmeasurementinrocks.Tectonophysics,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論