2024屆安徽省合肥市區(qū)屬中學(xué)高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第1頁
2024屆安徽省合肥市區(qū)屬中學(xué)高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第2頁
2024屆安徽省合肥市區(qū)屬中學(xué)高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第3頁
2024屆安徽省合肥市區(qū)屬中學(xué)高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第4頁
2024屆安徽省合肥市區(qū)屬中學(xué)高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆安徽省合肥市區(qū)屬中學(xué)高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列的前項和為,若,且公比為2,則與的關(guān)系正確的是()A. B.C. D.2.已知雙曲線的右焦點為為坐標原點,以為直徑的圓與雙曲線的一條漸近線交于點及點,則雙曲線的方程為()A. B. C. D.3.公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.124.我國古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國古代數(shù)學(xué)的重要文獻.這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.某中學(xué)擬從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為()A. B. C. D.5.某地區(qū)高考改革,實行“3+2+1”模式,即“3”指語文、數(shù)學(xué)、外語三門必考科目,“1”指在物理、歷史兩門科目中必選一門,“2”指在化學(xué)、生物、政治、地理以及除了必選一門以外的歷史或物理這五門學(xué)科中任意選擇兩門學(xué)科,則一名學(xué)生的不同選科組合有()A.8種 B.12種 C.16種 D.20種6.設(shè)點是橢圓上的一點,是橢圓的兩個焦點,若,則()A. B. C. D.7.點為棱長是2的正方體的內(nèi)切球球面上的動點,點為的中點,若滿足,則動點的軌跡的長度為()A. B. C. D.8.復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點為則()A. B. C. D.9.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.10.函數(shù)的大致圖象是A. B. C. D.11.平行四邊形中,已知,,點、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.12.若函數(shù)函數(shù)只有1個零點,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若函數(shù)恰有4個零點,則實數(shù)的取值范圍是________.14.已知點M是曲線y=2lnx+x2﹣3x上一動點,當曲線在M處的切線斜率取得最小值時,該切線的方程為_______.15.已知雙曲線的左右焦點為,過作軸的垂線與相交于兩點,與軸相交于.若,則雙曲線的離心率為_________.16.已知一組數(shù)據(jù),1,0,,的方差為10,則________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點是拋物線的頂點,,是上的兩個動點,且.(1)判斷點是否在直線上?說明理由;(2)設(shè)點是△的外接圓的圓心,點到軸的距離為,點,求的最大值.18.(12分)設(shè)函數(shù)f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).(Ⅰ)討論f(x)的單調(diào)性;(Ⅱ)證明:當x>1時,g(x)>0;(Ⅲ)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.19.(12分)已知曲線C的極坐標方程是.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是:(是參數(shù)).(1)若直線l與曲線C相交于A、B兩點,且,試求實數(shù)m值.(2)設(shè)為曲線上任意一點,求的取值范圍.20.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍;(2)若,求的最大值.21.(12分)已知函數(shù)(,),且對任意,都有.(Ⅰ)用含的表達式表示;(Ⅱ)若存在兩個極值點,,且,求出的取值范圍,并證明;(Ⅲ)在(Ⅱ)的條件下,判斷零點的個數(shù),并說明理由.22.(10分)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的參數(shù)方程是(為參數(shù),常數(shù)),曲線的極坐標方程是.(1)寫出的普通方程及的直角坐標方程,并指出是什么曲線;(2)若直線與曲線,均相切且相切于同一點,求直線的極坐標方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

在等比數(shù)列中,由即可表示之間的關(guān)系.【詳解】由題可知,等比數(shù)列中,且公比為2,故故選:C【點睛】本題考查等比數(shù)列求和公式的應(yīng)用,屬于基礎(chǔ)題.2、C【解析】

根據(jù)雙曲線方程求出漸近線方程:,再將點代入可得,連接,根據(jù)圓的性質(zhì)可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點睛】本題考查了雙曲線的幾何性質(zhì),需掌握雙曲線的漸近線求法,屬于中檔題.3、C【解析】

由開始,按照框圖,依次求出s,進行判斷。【詳解】,故選C.【點睛】框圖問題,依據(jù)框圖結(jié)構(gòu),依次準確求出數(shù)值,進行判斷,是解題關(guān)鍵。4、D【解析】

利用列舉法,從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有9種情況,由古典概型概率公式可得結(jié)果.【詳解】《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.記這5部專著分別為,其中產(chǎn)生于漢、魏、晉、南北朝時期.從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為.故選D.【點睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時,找準基本事件個數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.5、C【解析】

分兩類進行討論:物理和歷史只選一門;物理和歷史都選,分別求出兩種情況對應(yīng)的組合數(shù),即可求出結(jié)果.【詳解】若一名學(xué)生只選物理和歷史中的一門,則有種組合;若一名學(xué)生物理和歷史都選,則有種組合;因此共有種組合.故選C【點睛】本題主要考查兩個計數(shù)原理,熟記其計數(shù)原理的概念,即可求出結(jié)果,屬于常考題型.6、B【解析】∵∵∴∵,∴∴故選B點睛:本題主要考查利用橢圓的簡單性質(zhì)及橢圓的定義.求解與橢圓性質(zhì)有關(guān)的問題時要結(jié)合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.7、C【解析】

設(shè)的中點為,利用正方形和正方體的性質(zhì),結(jié)合線面垂直的判定定理可以證明出平面,這樣可以確定動點的軌跡,最后求出動點的軌跡的長度.【詳解】設(shè)的中點為,連接,因此有,而,而平面,,因此有平面,所以動點的軌跡平面與正方體的內(nèi)切球的交線.正方體的棱長為2,所以內(nèi)切球的半徑為,建立如下圖所示的以為坐標原點的空間直角坐標系:因此有,設(shè)平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動點的軌跡的長度為.故選:C【點睛】本題考查了線面垂直的判定定理的應(yīng)用,考查了立體幾何中軌跡問題,考查了球截面的性質(zhì),考查了空間想象能力和數(shù)學(xué)運算能力.8、B【解析】

求得復(fù)數(shù),結(jié)合復(fù)數(shù)除法運算,求得的值.【詳解】易知,則.故選:B【點睛】本小題主要考查復(fù)數(shù)及其坐標的對應(yīng),考查復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.9、D【解析】

先計算,然后將進行平方,,可得結(jié)果.【詳解】由題意可得:∴∴則.故選:D.【點睛】本題考查的是向量的數(shù)量積的運算和模的計算,屬基礎(chǔ)題。10、A【解析】

利用函數(shù)的對稱性及函數(shù)值的符號即可作出判斷.【詳解】由題意可知函數(shù)為奇函數(shù),可排除B選項;當時,,可排除D選項;當時,,當時,,即,可排除C選項,故選:A【點睛】本題考查了函數(shù)圖象的判斷,函數(shù)對稱性的應(yīng)用,屬于中檔題.11、C【解析】

將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點睛】本題考查向量的幾何意義,考查向量的線性運算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.12、C【解析】

轉(zhuǎn)化有1個零點為與的圖象有1個交點,求導(dǎo)研究臨界狀態(tài)相切時的斜率,數(shù)形結(jié)合即得解.【詳解】有1個零點等價于與的圖象有1個交點.記,則過原點作的切線,設(shè)切點為,則切線方程為,又切線過原點,即,將,代入解得.所以切線斜率為,所以或.故選:C【點睛】本題考查了導(dǎo)數(shù)在函數(shù)零點問題中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象,利用數(shù)形結(jié)合思想進行求解即可.【詳解】函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象如下圖所示:由圖象可知:實數(shù)的取值范圍是.故答案為:【點睛】本題考查了已知函數(shù)零點個數(shù)求參數(shù)取值范圍問題,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想.14、【解析】

先求導(dǎo)數(shù)可得切線斜率,利用基本不等式可得切點橫坐標,從而可得切線方程.【詳解】,,=1時有最小值1,此時M(1,﹣2),故切線方程為:,即.故答案為:.【點睛】本題主要考查導(dǎo)數(shù)的幾何意義,切點處的導(dǎo)數(shù)值等于切線的斜率是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).15、【解析】

由已知可得,結(jié)合雙曲線的定義可知,結(jié)合,從而可求出離心率.【詳解】解:,,又,則.,,,即解得,即.故答案為:.【點睛】本題考查了雙曲線的定義,考查了雙曲線的性質(zhì).本題的關(guān)鍵是根據(jù)幾何關(guān)系,分析出.關(guān)于圓錐曲線的問題,一般如果能結(jié)合幾何性質(zhì),可大大減少計算量.16、7或【解析】

依據(jù)方差公式列出方程,解出即可.【詳解】,1,0,,的平均數(shù)為,所以解得或.【點睛】本題主要考查方差公式的應(yīng)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)不在,證明見詳解;(2)【解析】

(1)假設(shè)直線方程,并于拋物線方程聯(lián)立,結(jié)合韋達定理,計算,可得,然后驗證可得結(jié)果.(2)分別計算線段中垂線的方程,然后聯(lián)立,根據(jù)(1)的條件可得點的軌跡方程,然后可得焦點,結(jié)合拋物線定義可得,計算可得結(jié)果.【詳解】(1)設(shè)直線方程,根據(jù)題意可知直線斜率一定存在,則則由所以將代入上式化簡可得,所以則直線方程為,所以直線過定點,所以可知點不在直線上.(2)設(shè)線段的中點為線段的中點為則直線的斜率為,直線的斜率為可知線段的中垂線的方程為由,所以上式化簡為即線段的中垂線的方程為同理可得:線段的中垂線的方程為則由(1)可知:所以即,所以點軌跡方程為焦點為,所以當三點共線時,有最大所以【點睛】本題考查直線于拋物線的綜合應(yīng)用,第(1)問中難點在于計算處,第(2)問中關(guān)鍵在于得到點的軌跡方程,直線與圓錐曲線的綜合常常要聯(lián)立方程,結(jié)合韋達定理,屬難題.18、(Ⅰ)當時,<0,單調(diào)遞減;當時,>0,單調(diào)遞增;(Ⅱ)詳見解析;(Ⅲ).【解析】試題分析:本題考查導(dǎo)數(shù)的計算、利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學(xué)生的分析問題、解決問題的能力和計算能力.第(Ⅰ)問,對求導(dǎo),再對a進行討論,判斷函數(shù)的單調(diào)性;第(Ⅱ)問,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而證明結(jié)論,第(Ⅲ)問,構(gòu)造函數(shù)=(),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而求解a的值.試題解析:(Ⅰ)<0,在內(nèi)單調(diào)遞減.由=0有.當時,<0,單調(diào)遞減;當時,>0,單調(diào)遞增.(Ⅱ)令=,則=.當時,>0,所以,從而=>0.(Ⅲ)由(Ⅱ),當時,>0.當,時,=.故當>在區(qū)間內(nèi)恒成立時,必有.當時,>1.由(Ⅰ)有,而,所以此時>在區(qū)間內(nèi)不恒成立.當時,令=().當時,=.因此,在區(qū)間單調(diào)遞增.又因為=0,所以當時,=>0,即>恒成立.綜上,.【考點】導(dǎo)數(shù)的計算,利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題【名師點睛】本題考查導(dǎo)數(shù)的計算,利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學(xué)生的分析問題、解決問題的能力和計算能力.求函數(shù)的單調(diào)性,基本方法是求,解方程,再通過的正負確定的單調(diào)性;要證明不等式,一般證明的最小值大于0,為此要研究函數(shù)的單調(diào)性.本題中注意由于函數(shù)的極小值沒法確定,因此要利用已經(jīng)求得的結(jié)論縮小參數(shù)取值范圍.比較新穎,學(xué)生不易想到,有一定的難度.19、(1)或;(2).【解析】

(1)將曲線的極坐標方程化為直角坐標方程,在直角坐標條件下求出曲線的圓心坐標和半徑,將直線的參數(shù)方程化為普通方程,由勾股定理列出等式可求的值;(2)將圓化為參數(shù)方程形式,代入由三角公式化簡可求其取值范圍.【詳解】(1)曲線C的極坐標方程是化為直角坐標方程為:直線的直角坐標方程為:圓心到直線l的距離(弦心距)圓心到直線的距離為:或(2)曲線的方程可化為,其參數(shù)方程為:為曲線上任意一點,的取值范圍是20、(1)(2)【解析】

(1)根據(jù)單調(diào)遞減可知導(dǎo)函數(shù)恒小于等于,采用參變分離的方法分離出,并將的部分構(gòu)造成新函數(shù),分析與最值之間的關(guān)系;(2)通過對的導(dǎo)函數(shù)分析,確定有唯一零點,則就是的極大值點也是最大值點,計算的值并利用進行化簡,從而確定.【詳解】(1)由題意知,在上恒成立,所以在上恒成立.令,則,所以在上單調(diào)遞增,所以,所以.(2)當時,.則,令,則,所以在上單調(diào)遞減.由于,,所以存在滿足,即.當時,,;當時,,.所以在上單調(diào)遞增,在上單調(diào)遞減.所以,因為,所以,所以,所以.【點睛】(1)求函數(shù)中字母的范圍時,常用的方法有兩種:參變分離法、分類討論法;(2)當導(dǎo)函數(shù)不易求零點時,需要將導(dǎo)函數(shù)中某些部分拿出作單獨分析,以便先確定導(dǎo)函數(shù)的單調(diào)性從而確定導(dǎo)函數(shù)的零點所在區(qū)間,再分析整個函數(shù)的單調(diào)性,最后確定出函數(shù)的最值.21、(1)(2)見解析(3)見解析【解析】試題分析:利用賦值法求出關(guān)系,求函數(shù)導(dǎo)數(shù),要求函數(shù)有兩個極值點,只需在內(nèi)有兩個實根,利用一元二次方程的根的分布求出的取值范圍,再根據(jù)函數(shù)圖象和極值的大小判斷零點的個數(shù).試題解析:(Ⅰ)根據(jù)題意:令,可得,所以,經(jīng)驗證,可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論