版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024學年浙江省湖州市實驗校中考試題猜想數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在△ABC中,BC=8,AB的中垂線交BC于D,AC的中垂線交BC于E,則△ADE的周長等于()A.8 B.4 C.12 D.162.在中,,,,則的值是()A. B. C. D.3.一個幾何體的俯視圖如圖所示,其中的數(shù)字表示該位置上小正方體的個數(shù),那么這個幾何體的主視圖是()A. B. C. D.4.如圖是拋物線y=ax2+bx+c(a≠0)的圖象的一部分,拋物線的頂點坐標是A(1,4),與x軸的一個交點是B(3,0),下列結論:①abc>0;②2a+b=0;③方程ax2+bx+c=4有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣2.0);⑤x(ax+b)≤a+b,其中正確結論的個數(shù)是()A.4個 B.3個 C.2個 D.1個5.已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數(shù)是()A.8B.9C.10D.116.二次函數(shù)y=ax2+bx﹣2(a≠0)的圖象的頂點在第三象限,且過點(1,0),設t=a﹣b﹣2,則t值的變化范圍是()A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<07.1cm2的電子屏上約有細菌135000個,135000用科學記數(shù)法表示為()A.0.135×106 B.1.35×105 C.13.5×104 D.135×1038.如圖,由矩形和三角形組合而成的廣告牌緊貼在墻面上,重疊部分(陰影)的面積是4m2,廣告牌所占的面積是30m2(厚度忽略不計),除重疊部分外,矩形剩余部分的面積比三角形剩余部分的面積多2m2,設矩形面積是xm2,三角形面積是ym2,則根據(jù)題意,可列出二元一次方程組為()A. B. C. D.9.(2011?黑河)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,現(xiàn)有下列結論:①b2﹣4ac>0②a>0③b>0④c>0⑤9a+3b+c<0,則其中結論正確的個數(shù)是() A、2個 B、3個 C、4個 D、5個10.下列計算正確的是()A.a(chǎn)2?a3=a6 B.(a2)3=a6 C.a(chǎn)6﹣a2=a4 D.a(chǎn)5+a5=a1011.如圖,PA切⊙O于點A,PO交⊙O于點B,點C是⊙O優(yōu)弧弧AB上一點,連接AC、BC,如果∠P=∠C,⊙O的半徑為1,則劣弧弧AB的長為()A.π B.π C.π D.π12.將一把直尺和一塊含30°和60°角的三角板ABC按如圖所示的位置放置,如果∠CDE=40°,那么∠BAF的大小為()A.10° B.15° C.20° D.25°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,半徑為3的⊙O與Rt△AOB的斜邊AB切于點D,交OB于點C,連接CD交直線OA于點E,若∠B=30°,則線段AE的長為.14.如圖,某水庫大壩的橫斷面是梯形,壩頂寬米,壩高是20米,背水坡的坡角為30°,迎水坡的坡度為1∶2,那么壩底的長度等于________米(結果保留根號)15.已知反比例函數(shù)y=在第二象限內的圖象如圖,經(jīng)過圖象上兩點A、E分別引y軸與x軸的垂線,交于點C,且與y軸與x軸分別交于點M、B.連接OC交反比例函數(shù)圖象于點D,且,連接OA,OE,如果△AOC的面積是15,則△ADC與△BOE的面積和為_____.16.⊙O的半徑為10cm,AB,CD是⊙O的兩條弦,且AB∥CD,AB=16cm,CD=12cm.則AB與CD之間的距離是cm.17.一次函數(shù)y=kx+b(k≠0)的圖象如圖所示,那么不等式kx+b<0的解集是_____.18.如圖,在中,于點,于點,為邊的中點,連接,則下列結論:①,②,③為等邊三角形,④當時,.請將正確結論的序號填在橫線上__.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)清朝數(shù)學家梅文鼎的《方程論》中有這樣一題:山田三畝,場地六畝,共折實田四畝七分;又山田五畝,場地三畝,共折實田五畝五分,問每畝山田折實田多少,每畝場地折實田多少?譯文為:若有山田3畝,場地6畝,其產(chǎn)糧相當于實田4.7畝;若有山田5畝,場地3畝,其產(chǎn)糧相當于實田5.5畝,問每畝山田和每畝場地產(chǎn)糧各相當于實田多少畝?20.(6分)如圖①,在正方形ABCD中,△AEF的頂點E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù).如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點M,N是BD邊上的任意兩點,且∠MAN=45°,將△ABM繞點A逆時針旋轉90°至△ADH位置,連接NH,試判斷MN2,ND2,DH2之間的數(shù)量關系,并說明理由.在圖①中,若EG=4,GF=6,求正方形ABCD的邊長.21.(6分)【發(fā)現(xiàn)證明】如圖1,點E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,F(xiàn)D之間的數(shù)量關系.小聰把△ABE繞點A逆時針旋轉90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.【類比引申】(1)如圖2,點E、F分別在正方形ABCD的邊CB、CD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關系,并證明;【聯(lián)想拓展】(2)如圖3,如圖,∠BAC=90°,AB=AC,點E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.22.(8分)已知:如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B兩點(A在B左),y軸交于點C(0,-3).(1)求拋物線的解析式;(2)若點D是線段BC下方拋物線上的動點,求四邊形ABCD面積的最大值;(3)若點E在x軸上,點P在拋物線上.是否存在以B、C、E、P為頂點且以BC為一邊的平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.23.(8分)如圖,將等腰直角三角形紙片ABC對折,折痕為CD.展平后,再將點B折疊在邊AC上(不與A、C重合),折痕為EF,點B在AC上的對應點為M,設CD與EM交于點P,連接PF.已知BC=1.(1)若M為AC的中點,求CF的長;(2)隨著點M在邊AC上取不同的位置,①△PFM的形狀是否發(fā)生變化?請說明理由;②求△PFM的周長的取值范圍.24.(10分)如圖所示:△ABC是等腰三角形,∠ABC=90°.(1)尺規(guī)作圖:作線段AB的垂直平分線l,垂足為H.(保留作圖痕跡,不寫作法);(2)垂直平分線l交AC于點D,求證:AB=2DH.25.(10分)解不等式組,并將它的解集在數(shù)軸上表示出來.26.(12分)解不等式組并寫出它的整數(shù)解.27.(12分)閱讀材料:小胖同學發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.(1)在圖1中證明小胖的發(fā)現(xiàn);借助小胖同學總結規(guī)律,構造“手拉手”圖形來解答下面的問題:(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點E為△ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】
∵AB的中垂線交BC于D,AC的中垂線交BC于E,∴DA=DB,EA=EC,則△ADE的周長=AD+DE+AE=BD+DE+EC=BC=8,故選A.2、D【解題分析】
首先根據(jù)勾股定理求得AC的長,然后利用正弦函數(shù)的定義即可求解.【題目詳解】∵∠C=90°,BC=1,AB=4,
∴,∴,故選:D.【題目點撥】本題考查了三角函數(shù)的定義,求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,轉化成直角三角形的邊長的比.3、A【解題分析】
一一對應即可.【題目詳解】最左邊有一個,中間有兩個,最右邊有三個,所以選A.【題目點撥】理解立體幾何的概念是解題的關鍵.4、B【解題分析】
通過圖象得到、、符號和拋物線對稱軸,將方程轉化為函數(shù)圖象交點問題,利用拋物線頂點證明.【題目詳解】由圖象可知,拋物線開口向下,則,,拋物線的頂點坐標是,拋物線對稱軸為直線,,,則①錯誤,②正確;方程的解,可以看做直線與拋物線的交點的橫坐標,由圖象可知,直線經(jīng)過拋物線頂點,則直線與拋物線有且只有一個交點,則方程有兩個相等的實數(shù)根,③正確;由拋物線對稱性,拋物線與軸的另一個交點是,則④錯誤;不等式可以化為,拋物線頂點為,當時,,故⑤正確.故選:.【題目點撥】本題是二次函數(shù)綜合題,考查了二次函數(shù)的各項系數(shù)與圖象位置的關系、拋物線對稱性和最值,以及用函數(shù)的觀點解決方程或不等式.5、C【解題分析】試題分析:已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數(shù)是360÷36=10,故選C.考點:多邊形的內角和外角.6、D【解題分析】
由二次函數(shù)的解析式可知,當x=1時,所對應的函數(shù)值y=a+b-2,把點(1,0)代入y=ax2+bx-2,a+b-2=0,然后根據(jù)頂點在第三象限,可以判斷出a與b的符號,進而求出t=a-b-2的變化范圍.【題目詳解】解:∵二次函數(shù)y=ax2+bx-2的頂點在第三象限,且經(jīng)過點(1,0)∴該函數(shù)是開口向上的,a>0
∵y=ax2+bx﹣2過點(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵頂點在第三象限,∴-<0.∴b>0.∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t<0.【題目點撥】本題考查大小二次函數(shù)的圖像,熟練掌握圖像的性質是解題的關鍵.7、B【解題分析】
根據(jù)科學記數(shù)法的表示形式(a×10n的形式,其中1≤|a|<10,n為整數(shù),確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同;當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù)).【題目詳解】解:135000用科學記數(shù)法表示為:1.35×1.故選B.【題目點撥】科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.8、A【解題分析】
根據(jù)題意找到等量關系:①矩形面積+三角形面積﹣陰影面積=30;②(矩形面積﹣陰影面積)﹣(三角形面積﹣陰影面積)=4,據(jù)此列出方程組.【題目詳解】依題意得:.故選A.【題目點撥】考查了由實際問題抽象出二元一次方程組.根據(jù)實際問題中的條件列方程組時,要注意抓住題目中的一些關鍵性詞語,找出等量關系,列出方程組.9、B【解題分析】分析:由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據(jù)拋物線與x軸交點及x=1時二次函數(shù)的值的情況進行推理,進而對所得結論進行判斷.解答:解:①根據(jù)圖示知,二次函數(shù)與x軸有兩個交點,所以△=b2-4ac>0;故①正確;
②根據(jù)圖示知,該函數(shù)圖象的開口向上,
∴a>0;
故②正確;
③又對稱軸x=-=1,
∴<0,
∴b<0;
故本選項錯誤;
④該函數(shù)圖象交于y軸的負半軸,
∴c<0;
故本選項錯誤;
⑤根據(jù)拋物線的對稱軸方程可知:(-1,0)關于對稱軸的對稱點是(3,0);
當x=-1時,y<0,所以當x=3時,也有y<0,即9a+3b+c<0;故⑤正確.
所以①②⑤三項正確.
故選B.10、B【解題分析】
根據(jù)同底數(shù)冪乘法、冪的乘方的運算性質計算后利用排除法求解.【題目詳解】A、a2?a3=a5,錯誤;B、(a2)3=a6,正確;C、不是同類項,不能合并,錯誤;D、a5+a5=2a5,錯誤;故選B.【題目點撥】本題綜合考查了整式運算的多個考點,包括同底數(shù)冪的乘法、冪的乘方、合并同類項,需熟練掌握且區(qū)分清楚,才不容易出錯.11、A【解題分析】
利用切線的性質得∠OAP=90°,再利用圓周角定理得到∠C=∠O,加上∠P=∠C可計算寫出∠O=60°,然后根據(jù)弧長公式計算劣弧的長.【題目詳解】解:∵PA切⊙O于點A,∴OA⊥PA,∴∠OAP=90°,∵∠C=∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的長=.故選:A.【題目點撥】本題考查了切線的性質:圓的切線垂直于經(jīng)過切點的半徑.也考查了圓周角定理和弧長公式.12、A【解題分析】
先根據(jù)∠CDE=40°,得出∠CED=50°,再根據(jù)DE∥AF,即可得到∠CAF=50°,最后根據(jù)∠BAC=60°,即可得出∠BAF的大?。绢}目詳解】由圖可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°?50°=10°,故選A.【題目點撥】本題考查了平行線的性質,熟練掌握這一點是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】
要求AE的長,只要求出OA和OE的長即可,要求OA的長可以根據(jù)∠B=30°和OB的長求得,OE可以根據(jù)∠OCE和OC的長求得.【題目詳解】解:連接OD,如圖所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BOtan30°=6×=2,∵∠COE=90°,OC=3,∴OE=OCtan60°=3×=3,∴AE=OE﹣OA=3-2=,【點晴】切線的性質14、【解題分析】
過梯形上底的兩個頂點向下底引垂線、,得到兩個直角三角形和一個矩形,分別解、求得線段、的長,然后與相加即可求得的長.【題目詳解】如圖,作,,垂足分別為點E,F(xiàn),則四邊形是矩形.由題意得,米,米,,斜坡的坡度為1∶2,在中,∵,∴米.在Rt△DCF中,∵斜坡的坡度為1∶2,∴,∴米,∴(米).∴壩底的長度等于米.故答案為.【題目點撥】此題考查了解直角三角形的應用﹣坡度坡角問題,難度適中,解答本題的關鍵是構造直角三角形和矩形,注意理解坡度與坡角的定義.15、1.【解題分析】連結AD,過D點作DG∥CM,∵,△AOC的面積是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面積是5,△ODF的面積是15×=,∴四邊形AMGF的面積=,∴△BOE的面積=△AOM的面積=×=12,∴△ADC與△BOE的面積和為5+12=1,故答案為:1.16、2或14【解題分析】
分兩種情況進行討論:①弦AB和CD在圓心同側;②弦AB和CD在圓心異側;作出半徑和弦心距,利用勾股定理和垂徑定理求解即可.【題目詳解】①當弦AB和CD在圓心同側時,如圖,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF?OE=2cm;②當弦AB和CD在圓心異側時,如圖,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB與CD之間的距離為14cm或2cm.故答案為:2或14.17、x>﹣1.【解題分析】
一次函數(shù)y=kx+b的圖象在x軸下方時,y<0,再根據(jù)圖象寫出解集即可.【題目詳解】當不等式kx+b<0時,一次函數(shù)y=kx+b的圖象在x軸下方,因此x>﹣1.故答案為:x>﹣1.【題目點撥】本題考查了一次函數(shù)與一元一次不等式:從函數(shù)的角度看,就是尋求使一次函數(shù)y=kx+b(k≠0)的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b(k≠0)在x軸上(或下)方部分所有的點的橫坐標所構成的集合.18、①③④【解題分析】
①根據(jù)直角三角形斜邊上的中線等于斜邊的一半可判斷①;②先證明△ABM∽△ACN,再根據(jù)相似三角形的對應邊成比例可判斷②;③先根據(jù)直角三角形兩銳角互余的性質求出∠ABM=∠ACN=30°,再根據(jù)三角形的內角和定理求出∠BCN+∠CBM=60°,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和求出∠BPN+∠CPM=120°,從而得到∠MPN=60°,又由①得PM=PN,根據(jù)有一個角是60°的等腰三角形是等邊三角形可判斷③;④當∠ABC=45°時,∠BCN=45°,進而判斷④.【題目詳解】①∵BM⊥AC于點M,CN⊥AB于點N,P為BC邊的中點,∴PM=BC,PN=BC,∴PM=PN,正確;②在△ABM與△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,錯誤;③∵∠A=60°,BM⊥AC于點M,CN⊥AB于點N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,∵點P是BC的中點,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等邊三角形,正確;④當∠ABC=45°時,∵CN⊥AB于點N,∴∠BNC=90°,∠BCN=45°,∵P為BC中點,可得BC=PB=PC,故④正確.所以正確的選項有:①③④故答案為①③④【題目點撥】本題主要考查了直角三角形斜邊的中線等于斜邊的一半的性質,相似三角形、等邊三角形、等腰直角三角形的判定與性質,等腰三角形三線合一的性質,仔細分析圖形并熟練掌握性質是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、每畝山田產(chǎn)糧相當于實田0.9畝,每畝場地產(chǎn)糧相當于實田畝.【解題分析】
設每畝山田產(chǎn)糧相當于實田x畝,每畝場地產(chǎn)糧相當于實田y畝,根據(jù)山田3畝,場地6畝,其產(chǎn)糧相當于實田4.7畝;又山田5畝,場地3畝,其產(chǎn)糧相當于實田5.5畝,列二元一次方程組求解.【題目詳解】解:設每畝山田產(chǎn)糧相當于實田x畝,每畝場地產(chǎn)糧相當于實田y畝.可列方程組為解得答:每畝山田相當于實田0.9畝,每畝場地相當于實田畝.20、(1)45°.(1)MN1=ND1+DH1.理由見解析;(3)11.【解題分析】
(1)先根據(jù)AG⊥EF得出△ABE和△AGE是直角三角形,再根據(jù)HL定理得出△ABE≌△AGE,故可得出∠BAE=∠GAE,同理可得出∠GAF=∠DAF,由此可得出結論;(1)由旋轉的性質得出∠BAM=∠DAH,再根據(jù)SAS定理得出△AMN≌△AHN,故可得出MN=HN.再由∠BAD=90°,AB=AD可知∠ABD=∠ADB=45°,根據(jù)勾股定理即可得出結論;(3)設正方形ABCD的邊長為x,則CE=x-4,CF=x-2,再根據(jù)勾股定理即可得出x的值.【題目詳解】解:(1)在正方形ABCD中,∠B=∠D=90°,∵AG⊥EF,∴△ABE和△AGE是直角三角形.在Rt△ABE和Rt△AGE中,,∴△ABE≌△AGE(HL),∴∠BAE=∠GAE.同理,∠GAF=∠DAF.∴∠EAF=∠EAG+∠FAG=∠BAD=45°.(1)MN1=ND1+DH1.由旋轉可知:∠BAM=∠DAH,∵∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN.在△AMN與△AHN中,,∴△AMN≌△AHN(SAS),∴MN=HN.∵∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°.∴∠HDN=∠HDA+∠ADB=90°.∴NH1=ND1+DH1.∴MN1=ND1+DH1.(3)由(1)知,BE=EG=4,DF=FG=2.設正方形ABCD的邊長為x,則CE=x-4,CF=x-2.∵CE1+CF1=EF1,∴(x-4)1+(x-2)1=101.解這個方程,得x1=11,x1=-1(不合題意,舍去).∴正方形ABCD的邊長為11.【題目點撥】本題考查的是幾何變換綜合題,涉及到三角形全等的判定與性質、勾股定理、正方形的性質等知識,難度適中.21、(1)DF=EF+BE.理由見解析;(2)CF=1.【解題分析】(1)把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合,證出△AEF≌△AFG,根據(jù)全等三角形的性質得出EF=FG,即可得出答案;(2)根據(jù)旋轉的性質的AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,根據(jù)勾股定理有FG2=FC2+CG2=BE2+FC2;關鍵全等三角形的性質得到FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE.理由:如圖1所示,∵AB=AD,∴把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合,∵∠ADC=∠ABE=90°,∴點C、D、G在一條直線上,∴EB=DG,AE=AG,∠EAB=∠GAD,∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°,∵∠EAF=15°,∴∠FAG=∠EAG﹣∠EAF=90°﹣15°=15°,∴∠EAF=∠GAF,在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∵FD=FG+DG,∴DF=EF+BE;(2)∵∠BAC=90°,AB=AC,∴將△ABE繞點A順時針旋轉90°得△ACG,連接FG,如圖2,∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2;又∵∠EAF=15°,而∠EAG=90°,∴∠GAF=90°﹣15°,在△AGF與△AEF中,,∴△AEF≌△AGF,∴EF=FG,∴CF2=EF2﹣BE2=52﹣32=16,∴CF=1.“點睛”本題考查了全等三角形的性質和判定,勾股定理,正方形的性質的應用,正確的作出輔助線構造全等三角形是解題的關鍵,此題是一道綜合題,難度較大,題目所給例題的思路,為解決此題做了較好的鋪墊.22、(1);(2);(3)P1(3,-3),P2(,3),P3(,3).【解題分析】
(1)將的坐標代入拋物線中,求出待定系數(shù)的值,即可得出拋物線的解析式;
(2)根據(jù)的坐標,易求得直線的解析式.由于都是定值,則的面積不變,若四邊形面積最大,則的面積最大;過點作軸交于,則可得到當面積有最大值時,四邊形的面積最大值;(3)本題應分情況討論:①過作軸的平行線,與拋物線的交點符合點的要求,此時的縱坐標相同,代入拋物線的解析式中即可求出點坐標;②將平移,令點落在軸(即點)、點落在拋物線(即點)上;可根據(jù)平行四邊形的性質,得出點縱坐標(縱坐標的絕對值相等),代入拋物線的解析式中即可求得點坐標.【題目詳解】解:(1)把代入,可以求得∴(2)過點作軸分別交線段和軸于點,在中,令,得設直線的解析式為可求得直線的解析式為:∵S四邊形ABCD設當時,有最大值此時四邊形ABCD面積有最大值(3)如圖所示,如圖:①過點C作CP1∥x軸交拋物線于點P1,過點P1作P1E1∥BC交x軸于點E1,此時四邊形BP1CE1為平行四邊形,
∵C(0,-3)
∴設P1(x,-3)
∴x2-x-3=-3,解得x1=0,x2=3,
∴P1(3,-3);
②平移直線BC交x軸于點E,交x軸上方的拋物線于點P,當BC=PE時,四邊形BCEP為平行四邊形,
∵C(0,-3)
∴設P(x,3),
∴x2-x-3=3,
x2-3x-8=0
解得x=或x=,
此時存在點P2(,3)和P3(,3),
綜上所述存在3個點符合題意,坐標分別是P1(3,-3),P2(,3),P3(,3).【題目點撥】此題考查了二次函數(shù)解析式的確定、圖形面積的求法、平行四邊形的判定和性質、二次函數(shù)的應用等知識,綜合性強,難度較大.23、(1)CF=;(2)①△PFM的形狀是等腰直角三角形,不會發(fā)生變化,理由見解析;②△PFM的周長滿足:2+2<(1+)y<1+1.【解題分析】
(1)由折疊的性質可知,F(xiàn)B=FM,設CF=x,則FB=FM=1﹣x,在Rt△CFM中,根據(jù)FM2=CF2+CM2,構建方程即可解決問題;(2)①△PFM的形狀是等腰直角三角形,想辦法證明△POF∽△MOC,可得∠PFO=∠MCO=15°,延長即可解決問題;②設FM=y,由勾股定理可知:PF=PM=y,可得△PFM的周長=(1+)y,由2<y<1,可得結論.【題目詳解】(1)∵M為AC的中點,∴CM=AC=BC=2,由折疊的性質可知,F(xiàn)B=FM,設CF=x,則FB=FM=1﹣x,在Rt△CFM中,F(xiàn)M2=CF2+CM2,即(1﹣x)2=x2+22,解得,x=,即CF=;(2)①△PFM的形狀是等腰直角三角形,不會發(fā)生變化,理由如下:由折疊的性質可知,∠PMF=∠B=15°,∵CD是中垂線,∴∠ACD=∠DCF=15°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴=,∴=,∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,∴∠AEM=∠CMF,∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC,∴∠DPE=∠MFC,∠MPC=∠MFC,∵∠PCM=∠OCF=15°,∴△MPC∽△OFC,∴,∴,∴,∵∠POF=∠MOC,∴△POF∽△MOC,∴∠PFO=∠MCO=15°,∴△PFM是等腰直角三角形;②∵△PFM是等腰直角三角形,設FM=y,由勾股定理可知:PF=PM=y,∴△PFM的周長=(1+)y,∵2<y<1,∴△PFM的周長滿足:2+2<(1+)y<1+1.【題目點撥】本題考查三角形綜合題、等腰直角三角形的性質和判定、翻折變換、相似三角形的判定和性質、勾股定理等知識,解題的關鍵是正確尋找相似三角形解決問題,學會利用參數(shù)解決問題,屬于中考??碱}型.24、(1)見解析;(2)證明見解析.【解題分析】
(1)利用線段垂直平分線的作法,分別以A,B為端點,大于為半徑作弧,得出直線l即可;
(2)利用利用平行線的性質以及平行線分線段成比例定理得出點D是AC的中點,進而得出答案.【題目詳解】解:(1)如圖所示:直線l即為所求;
(2)證明:∵點H是AB的中點,且DH⊥AB,∴DH∥BC,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年中國泥漿失水量測定器數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國PC銘板數(shù)據(jù)監(jiān)測研究報告
- 云南省大理州2025屆高中畢業(yè)生第一次復習統(tǒng)一檢測物理試題(含解析)
- 2024至2030年數(shù)模轉換板項目投資價值分析報告
- 2024年中國童裝吊帶背心市場調查研究報告
- 2024年面罩亮框項目可行性研究報告
- 華電哈樓頂廣告 拆除方案
- 2024年中國LED點陣系統(tǒng)市場調查研究報告
- 肉制品加工企業(yè)的員工培訓與發(fā)展考核試卷
- 創(chuàng)建和維護團隊信任的基礎考核試卷
- 浙江省杭州市上城區(qū)采荷中學2023-2024學年七年級上學期期中數(shù)學試卷
- 危急值的考試題及答案
- 2.3 河流 第3課時 課件-2024-2025學年八年級地理上學期人教版
- 監(jiān)理協(xié)議合同模板
- 2023年西藏自治區(qū)日喀則市拉孜稅務局公務員考試《行政職業(yè)能力測驗》歷年真題及詳解
- 2024內蒙古農(nóng)牧業(yè)融資擔保限公司公開招聘28人高頻難、易錯點500題模擬試題附帶答案詳解
- 6.3+價值的創(chuàng)造和實現(xiàn)課件-2024-2025學年高中政治統(tǒng)編版必修四哲學與文化
- 內斜視課件教學課件
- 湖南省長沙市明德天心中學2024-2025學年七年級上學期9月月考數(shù)學試題(無答案)
- 課件:《中華民族共同體概論》第十五講:新時代與中華民族共同體建設
- 自然拼讀法-圖文.課件
評論
0/150
提交評論