版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年云南省景東縣第二中學(xué)高三數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知命題:“關(guān)于的方程有實(shí)根”,若為真命題的充分不必要條件為,則實(shí)數(shù)的取值范圍是()A. B. C. D.2.在三棱錐中,,,,,點(diǎn)到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.3.已知集合,,則集合的真子集的個(gè)數(shù)是()A.8 B.7 C.4 D.34.在區(qū)間上隨機(jī)取一個(gè)數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.115.已知為虛數(shù)單位,若復(fù)數(shù),則A. B.C. D.6.已知雙曲線的實(shí)軸長(zhǎng)為,離心率為,、分別為雙曲線的左、右焦點(diǎn),點(diǎn)在雙曲線上運(yùn)動(dòng),若為銳角三角形,則的取值范圍是()A. B. C. D.7.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,D是AB的中點(diǎn),若,且,則面積的最大值是()A. B. C. D.8.若函數(shù)在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.39.集合,則()A. B. C. D.10.已知函數(shù),.若存在,使得成立,則的最大值為()A. B.C. D.11.的展開式中的系數(shù)為()A. B. C. D.12.設(shè)、,數(shù)列滿足,,,則()A.對(duì)于任意,都存在實(shí)數(shù),使得恒成立B.對(duì)于任意,都存在實(shí)數(shù),使得恒成立C.對(duì)于任意,都存在實(shí)數(shù),使得恒成立D.對(duì)于任意,都存在實(shí)數(shù),使得恒成立二、填空題:本題共4小題,每小題5分,共20分。13.若,則________.14.的展開式中,常數(shù)項(xiàng)為______;系數(shù)最大的項(xiàng)是______.15.定義在上的偶函數(shù)滿足,且,當(dāng)時(shí),.已知方程在區(qū)間上所有的實(shí)數(shù)根之和為.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則__________,__________.16.已知,,分別為內(nèi)角,,的對(duì)邊,,,,則的面積為__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)根據(jù)國(guó)家統(tǒng)計(jì)局?jǐn)?shù)據(jù),1978年至2018年我國(guó)GDP總量從0.37萬(wàn)億元躍升至90萬(wàn)億元,實(shí)際增長(zhǎng)了242倍多,綜合國(guó)力大幅提升.將年份1978,1988,1998,2008,2018分別用1,2,3,4,5代替,并表示為;表示全國(guó)GDP總量,表中,.326.4741.90310209.7614.05(1)根據(jù)數(shù)據(jù)及統(tǒng)計(jì)圖表,判斷與(其中為自然對(duì)數(shù)的底數(shù))哪一個(gè)更適宜作為全國(guó)GDP總量關(guān)于的回歸方程類型?(給出判斷即可,不必說(shuō)明理由),并求出關(guān)于的回歸方程.(2)使用參考數(shù)據(jù),估計(jì)2020年的全國(guó)GDP總量.線性回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:,.參考數(shù)據(jù):45678的近似值551484031097298118.(12分)以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,建立極坐標(biāo)系,已知曲線,曲線(為參數(shù)),求曲線交點(diǎn)的直角坐標(biāo).19.(12分)在一次電視節(jié)目的答題游戲中,題型為選擇題,只有“A”和“B”兩種結(jié)果,其中某選手選擇正確的概率為p,選擇錯(cuò)誤的概率為q,若選擇正確則加1分,選擇錯(cuò)誤則減1分,現(xiàn)記“該選手答完n道題后總得分為”.(1)當(dāng)時(shí),記,求的分布列及數(shù)學(xué)期望;(2)當(dāng),時(shí),求且的概率.20.(12分)在中,,是邊上一點(diǎn),且,.(1)求的長(zhǎng);(2)若的面積為14,求的長(zhǎng).21.(12分)設(shè)函數(shù),.(1)解不等式;(2)若對(duì)任意的實(shí)數(shù)恒成立,求的取值范圍.22.(10分)已知橢圓的長(zhǎng)軸長(zhǎng)為,離心率(1)求橢圓的方程;(2)設(shè)分別為橢圓與軸正半軸和軸正半軸的交點(diǎn),是橢圓上在第一象限的一點(diǎn),直線與軸交于點(diǎn),直線與軸交于點(diǎn),問(wèn)與面積之差是否為定值?說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】命題p:,為,又為真命題的充分不必要條件為,故2、C【解析】
首先根據(jù)垂直關(guān)系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個(gè)表達(dá)式,在中,可以計(jì)算出的一個(gè)表達(dá)式,根據(jù)長(zhǎng)度關(guān)系可構(gòu)造等式求得半徑,進(jìn)而求出球的表面積.【詳解】取中點(diǎn),由,可知:,為三棱錐外接球球心,過(guò)作平面,交平面于,連接交于,連接,,,,,,為的中點(diǎn)由球的性質(zhì)可知:平面,,且.設(shè),,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【點(diǎn)睛】本題考查三棱錐外接球的表面積的求解問(wèn)題,求解幾何體外接球相關(guān)問(wèn)題的關(guān)鍵是能夠利用球的性質(zhì)確定外接球球心的位置.3、D【解析】
轉(zhuǎn)化條件得,利用元素個(gè)數(shù)為n的集合真子集個(gè)數(shù)為個(gè)即可得解.【詳解】由題意得,,集合的真子集的個(gè)數(shù)為個(gè).故選:D.【點(diǎn)睛】本題考查了集合的化簡(jiǎn)和運(yùn)算,考查了集合真子集個(gè)數(shù)問(wèn)題,屬于基礎(chǔ)題.4、D【解析】
由題意,本題符合幾何概型,只要求出區(qū)間的長(zhǎng)度以及使不等式成立的的范圍區(qū)間長(zhǎng)度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結(jié)果.【詳解】由題意,本題符合幾何概型,區(qū)間長(zhǎng)度為6,使得成立的的范圍為,區(qū)間長(zhǎng)度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點(diǎn)睛】該題考查的是有關(guān)幾何概型與等差數(shù)列的綜合題,涉及到的知識(shí)點(diǎn)有長(zhǎng)度型幾何概型概率公式,等差數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題目.5、B【解析】
因?yàn)?,所以,故選B.6、A【解析】
由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結(jié)合即可解決.【詳解】由已知可得,,所以,從而雙曲線方程為,不妨設(shè)點(diǎn)在雙曲線右支上運(yùn)動(dòng),則,當(dāng)時(shí),此時(shí),所以,,所以;當(dāng)軸時(shí),,所以,又為銳角三角形,所以.故選:A.【點(diǎn)睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,本題的關(guān)鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.7、A【解析】
根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點(diǎn),且,,即,即,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.的面積,所以面積的最大值為.故選:.【點(diǎn)睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運(yùn)算,屬于中檔題.8、B【解析】
根據(jù)極值點(diǎn)處的導(dǎo)數(shù)為零先求出的值,然后再按照求函數(shù)在連續(xù)的閉區(qū)間上最值的求法計(jì)算即可.【詳解】解:由已知得,,,經(jīng)檢驗(yàn)滿足題意.,.由得;由得或.所以函數(shù)在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.【點(diǎn)睛】本題考查了導(dǎo)數(shù)極值的性質(zhì)以及利用導(dǎo)數(shù)求函數(shù)在連續(xù)的閉區(qū)間上的最值問(wèn)題的基本思路,屬于中檔題.9、D【解析】
利用交集的定義直接計(jì)算即可.【詳解】,故,故選:D.【點(diǎn)睛】本題考查集合的交運(yùn)算,注意常見(jiàn)集合的符號(hào)表示,本題屬于基礎(chǔ)題.10、C【解析】
由題意可知,,由可得出,,利用導(dǎo)數(shù)可得出函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,進(jìn)而可得出,由此可得出,可得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)在上的最大值即可得解.【詳解】,,由于,則,同理可知,,函數(shù)的定義域?yàn)?,?duì)恒成立,所以,函數(shù)在區(qū)間上單調(diào)遞增,同理可知,函數(shù)在區(qū)間上單調(diào)遞增,,則,,則,構(gòu)造函數(shù),其中,則.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增;當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減.所以,.故選:C.【點(diǎn)睛】本題考查代數(shù)式最值的計(jì)算,涉及指對(duì)同構(gòu)思想的應(yīng)用,考查化歸與轉(zhuǎn)化思想的應(yīng)用,有一定的難度.11、C【解析】由題意,根據(jù)二項(xiàng)式定理展開式的通項(xiàng)公式,得展開式的通項(xiàng)為,則展開式的通項(xiàng)為,由,得,所以所求的系數(shù)為.故選C.點(diǎn)睛:此題主要考查二項(xiàng)式定理的通項(xiàng)公式的應(yīng)用,以及組合數(shù)、整數(shù)冪的運(yùn)算等有關(guān)方面的知識(shí)與技能,屬于中低檔題,也是??贾R(shí)點(diǎn).在二項(xiàng)式定理的應(yīng)用中,注意區(qū)分二項(xiàng)式系數(shù)與系數(shù),先求出通項(xiàng)公式,再根據(jù)所求問(wèn)題,通過(guò)確定未知的次數(shù),求出,將的值代入通項(xiàng)公式進(jìn)行計(jì)算,從而問(wèn)題可得解.12、D【解析】
取,可排除AB;由蛛網(wǎng)圖可得數(shù)列的單調(diào)情況,進(jìn)而得到要使,只需,由此可得到答案.【詳解】取,,數(shù)列恒單調(diào)遞增,且不存在最大值,故排除AB選項(xiàng);由蛛網(wǎng)圖可知,存在兩個(gè)不動(dòng)點(diǎn),且,,因?yàn)楫?dāng)時(shí),數(shù)列單調(diào)遞增,則;當(dāng)時(shí),數(shù)列單調(diào)遞減,則;所以要使,只需要,故,化簡(jiǎn)得且.故選:D.【點(diǎn)睛】本題考查遞推數(shù)列的綜合運(yùn)用,考查邏輯推理能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、13【解析】
由導(dǎo)函數(shù)的應(yīng)用得:設(shè),,所以,,又,所以,即,由二項(xiàng)式定理:令得:,再由,求出,從而得到的值;【詳解】解:設(shè),,所以,,又,所以,即,取得:,又,所以,故,故答案為:13【點(diǎn)睛】本題考查了導(dǎo)函數(shù)的應(yīng)用、二項(xiàng)式定理,屬于中檔題14、【解析】
求出二項(xiàng)展開式的通項(xiàng),令指數(shù)為零,求出參數(shù)的值,代入可得出展開式中的常數(shù)項(xiàng);求出項(xiàng)的系數(shù),利用作商法可求出系數(shù)最大的項(xiàng).【詳解】的展開式的通項(xiàng)為,令,得,所以,展開式中的常數(shù)項(xiàng)為;令,令,即,解得,,,因此,展開式中系數(shù)最大的項(xiàng)為.故答案為:;.【點(diǎn)睛】本題考查二項(xiàng)展開式中常數(shù)項(xiàng)的求解,同時(shí)也考查了系數(shù)最大項(xiàng)的求解,涉及展開式通項(xiàng)的應(yīng)用,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.15、24【解析】
根據(jù)函數(shù)為偶函數(shù)且,所以的周期為,的實(shí)數(shù)根是函數(shù)和函數(shù)的圖象的交點(diǎn)的橫坐標(biāo),在平面直角坐標(biāo)系中畫出函數(shù)圖象,根據(jù)函數(shù)的對(duì)稱性可得所有實(shí)數(shù)根的和為,從而可得參數(shù)的值,最后求出函數(shù)的解析式,代入求值即可.【詳解】解:因?yàn)闉榕己瘮?shù)且,所以的周期為.因?yàn)闀r(shí),,所以可作出在區(qū)間上的圖象,而方程的實(shí)數(shù)根是函數(shù)和函數(shù)的圖象的交點(diǎn)的橫坐標(biāo),結(jié)合函數(shù)和函數(shù)在區(qū)間上的簡(jiǎn)圖,可知兩個(gè)函數(shù)的圖象在區(qū)間上有六個(gè)交點(diǎn).由圖象的對(duì)稱性可知,此六個(gè)交點(diǎn)的橫坐標(biāo)之和為,所以,故.因?yàn)?,所?故.故答案為:;【點(diǎn)睛】本題考查函數(shù)的奇偶性、周期性、對(duì)稱性的應(yīng)用,函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.16、【解析】
根據(jù)題意,利用余弦定理求得,再運(yùn)用三角形的面積公式即可求得結(jié)果.【詳解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面積.故答案為:.【點(diǎn)睛】本題考查余弦定理的應(yīng)用和三角形的面積公式,考查計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2)148萬(wàn)億元.【解析】
(1)由散點(diǎn)圖知更適宜,對(duì)兩邊取自然對(duì)數(shù)得,令,,,則,再利用線性回歸方程的計(jì)算公式計(jì)算即可;(2)將代入所求的回歸方程中計(jì)算即可.【詳解】(1)根據(jù)數(shù)據(jù)及圖表可以判斷,更適宜作為全國(guó)GDP總量關(guān)于的回歸方程.對(duì)兩邊取自然對(duì)數(shù)得,令,,,得.因?yàn)?,所以,所以關(guān)于的線性回歸方程為,所以關(guān)于的回歸方程為.(2)將代入,其中,于是2020年的全國(guó)GDP總量約為:萬(wàn)億元.【點(diǎn)睛】本題考查非線性回歸方程的應(yīng)用,在處理非線性回歸方程時(shí),先作變換,轉(zhuǎn)化成線性回歸直線方程來(lái)處理,是一道中檔題.18、【解析】
利用極坐標(biāo)方程與普通方程、參數(shù)方程間的互化公式化簡(jiǎn)即可.【詳解】因?yàn)椋?,所以曲線的直角坐標(biāo)方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所以曲線的交點(diǎn)坐標(biāo)為.【點(diǎn)睛】本題考查極坐標(biāo)方程與普通方程,參數(shù)方程與普通方程間的互化,考查學(xué)生的計(jì)算能力,是一道容易題.19、(1)見(jiàn)解析,0(2)【解析】
(1)即該選手答完3道題后總得分,可能出現(xiàn)的情況為3道題都答對(duì),答對(duì)2道答錯(cuò)1道,答對(duì)1道答錯(cuò)2道,3道題都答錯(cuò),進(jìn)而求解即可;(2)當(dāng)時(shí),即答完8題后,正確的題數(shù)為5題,錯(cuò)誤的題數(shù)是3題,又,則第一題答對(duì),第二題第三題至少有一道答對(duì),進(jìn)而求解.【詳解】解:(1)的取值可能為,,1,3,又因?yàn)?故,,,,所以的分布列為:13所以(2)當(dāng)時(shí),即答完8題后,正確的題數(shù)為5題,錯(cuò)誤的題數(shù)是3題,又已知,第一題答對(duì),若第二題回答正確,則其余6題可任意答對(duì)3題;若第二題回答錯(cuò)誤,第三題回答正確,則后5題可任意答對(duì)題,此時(shí)的概率為(或).【點(diǎn)睛】本題考查二項(xiàng)分布的分布列及期望,考查數(shù)據(jù)處理能力,考查分類討論思想.20、(1)1;(2)5.【解析】
(1)由同角三角函數(shù)關(guān)系求得,再由兩角差的正弦公式求得,最后由正弦定理構(gòu)建方程,求得答案.(2)在中,由正弦定理構(gòu)建方程求得AB,再由任意三角形的面積公式構(gòu)建方程求得BC,最后由余弦定理構(gòu)建方程求得AC.【詳解】(1)據(jù)題意,,且,所以.所以.在中,據(jù)正弦定理可知,,所以.(2)在中,據(jù)正弦定理可知,所以.因?yàn)榈拿娣e為14,所以,即,得.在中,據(jù)余弦定理可知,,所以.【點(diǎn)睛】本題考查由正弦定理與余弦定理解三角形,還考查了由同角三角函數(shù)關(guān)系和兩角差的正弦公式化簡(jiǎn)求值,屬于簡(jiǎn)單題.21、(1);(2)【解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 物品投放協(xié)議合同范例
- 電力維修協(xié)議合同范例
- 展位租賃合同范例
- 個(gè)人批發(fā)合同范例
- 水果供貨貨款合同范例
- 簡(jiǎn)易商鋪付款合同范例
- 購(gòu)銷合同范例門窗
- 店鋪裝修代購(gòu)合同范例
- 上網(wǎng)室改造合同范例
- 廠家聯(lián)營(yíng)合同范例
- 2024-2025學(xué)年語(yǔ)文二年級(jí)上冊(cè) 部編版期末測(cè)試卷(含答案)
- 2025年江西省水利投資集團(tuán)有限公司第二批次校園招聘筆試備考題庫(kù)及答案解析
- 24春國(guó)家開放大學(xué)《教育學(xué)》期末大作業(yè)
- MOOC 自然保護(hù)與生態(tài)安全:拯救地球家園-暨南大學(xué) 中國(guó)大學(xué)慕課答案
- 2024年意識(shí)形態(tài)工作專題會(huì)議記錄【6篇】
- 23秋國(guó)家開放大學(xué)《液壓氣動(dòng)技術(shù)》形考任務(wù)1-3參考答案
- 小學(xué)六年級(jí)數(shù)學(xué)計(jì)算題100道(含答案)
- 【公開課】課件——小班數(shù)學(xué)活動(dòng)《青蛙跳荷葉》
- 趕工措施施工方案(完整版)
- 犬腎衰竭的診斷和治療
- 實(shí)驗(yàn)二十八 實(shí)驗(yàn)設(shè)計(jì)——食醋中總酸度的測(cè)定
評(píng)論
0/150
提交評(píng)論