版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷
注意事項(xiàng):
1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)
填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角〃條形碼粘貼處〃o
2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦
干凈后,再選涂其他答案。答案不能答在試題卷上。
3,非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先
劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。
4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。
一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
1.“中國(guó)剩余定理”又稱“孫子定理”,最早可見于中國(guó)南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物
不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個(gè)相關(guān)
的問題:將1到2020這2020個(gè)自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,
則該數(shù)列各項(xiàng)之和為()
A.56383B.57171C.59189D.61242
2.已知函數(shù)/(x)=lnx+l,g(x)=2e'T,若〃〃?)=g(小成立,則〃「〃的最小值是()
A.—I-In2B.C-2C.In2D.y[c
222
3.已知四棱錐尸―ABC。中,24_L平面A8CZ),底面A8C。是邊長(zhǎng)為2的正方形,PA=6E為PC的中點(diǎn),
則異面直線BE與PD所成角的余弦值為()
.V13KV130厲nV15
A.--------B.------C.--------D.------
393955
4.下列命題是真命題的是()
A.若平面a,0,Y,滿足£■!?7,則a〃£;
2
B.命題,:VxeR,l-x<b貝!If:3xne7?,l-x^<l;
C.“命題P"為真”是“命題P八4為真”的充分不必要條件;
D.命題“若(工-1),+1=0,則x=0”的逆否命題為:“若XH0,則
5.已知空間兩不同直線加、",兩不同平面夕,£,下列命題正確的是()
A.若加||a且“IIa,則,”11〃B.若加?!£且則〃||小
C.若〃?_La且"||/,則a,/7D.若加不垂直于a,且〃ua,則機(jī)不垂直于〃
6.在(x-乙尸的展開式中,/的系數(shù)為()
2x
A.-120B.120C.-15D.15
7.若函數(shù)的圖象如圖所示,貝!l/(x)的解析式可能是()
A.B.=c.=D.
,3x-4y+10>0
8.設(shè)x,)‘滿足約束條件<x+6y—4N0,則z=x+2y的最大值是()
2x+y-840
A.4B.6C.8D.1()
9.若復(fù)數(shù)網(wǎng)口(asR)是純虛數(shù),則復(fù)數(shù)2a+2i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()
1+z
A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限
10.以A(3,-l),8(-2,2)為直徑的圓的方程是
A.x2+y2-x-y-8=0B.x2+y2-x-j-9=0
C.x2+y2+x+y-8=0D.x2+y2+x+y-9=0
11.“一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡(jiǎn)稱,旨在積極發(fā)展我國(guó)與沿線國(guó)家經(jīng)濟(jì)合作關(guān)系,
共同打造政治互信、經(jīng)濟(jì)融合、文化包容的命運(yùn)共同體.自2015年以來,“一帶一路”建設(shè)成果顯著.如圖是2015—2019
年,我國(guó)對(duì)“一帶一路”沿線國(guó)家進(jìn)出口情況統(tǒng)計(jì)圖,下列描述錯(cuò)誤的是()
zuiou.AH/HAH距zuiy4
=出口0?道口0???,出口"一道口埸迪
A.這五年,出口圓1期之和比進(jìn)口總額之列大
B.這五年,2015年出口額最少
C.這五年,2019年進(jìn)口增速最快
D.這五年,出口增速前四年逐年下降
12.一個(gè)正三棱柱的正(主)視圖如圖,則該正三棱柱的側(cè)面積是()
D.6
二、填空題:本題共4小題,每小題5分,共20分。
13.請(qǐng)列舉用0,1,2,3這4個(gè)數(shù)字所組成的無(wú)重復(fù)數(shù)字且比210大的所有三位奇數(shù):
14.成都市某次高三統(tǒng)考,成績(jī)X經(jīng)統(tǒng)計(jì)分析,近似服從正態(tài)分布X?NQOO,。?),且P(86<X<100)=0.15,若
該市有8000人參考,則估計(jì)成都市該次統(tǒng)考中成績(jī)X大于114分的人數(shù)為.
15.如圖,在矩形ABCD中,40=243=4,E是的中點(diǎn),將△/WE,ACDE分別沿BE,CE折起,使得
平面ABEL平面8CE,平面平面BCE,則所得幾何體A8CDE的外接球的體積為.
16.[/一子)的展開式中的常數(shù)項(xiàng)為.
三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。
17.(12分)如圖,在三棱柱ABC—4AG中,AC=BC=1,4?=4,4。=1,4。,平面A5c.
(1)證明:平面4ACC|J?平面
(2)求二面角A-48-。的余弦值.
222,
18.(12分)已知實(shí)數(shù)x,y,z滿足「三+丁二+^^=2,證明:-^+-^+-^<72.
1+x21+/1+z21+x1+/1+z
19.(12分)已知函數(shù)/(x)="hu+/為實(shí)數(shù))的圖像在點(diǎn)(1,/。))處的切線方程為y=x-L
(1)求實(shí)數(shù)。力的值及函數(shù)〃x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)g(x)=1,證明履%)=85)(王<馬)時(shí),X,+x2>2.
20.(12分)已知橢圓C:三+營(yíng)=1(0<。<。)的離心率為暫.且經(jīng)過點(diǎn)(1,日)
(1)求橢圓C的方程;
(2)過點(diǎn)(0,2)的直線/與橢圓C交于不同兩點(diǎn)A、B,以。4、03為鄰邊的平行四邊形04MB的頂點(diǎn)M在橢圓C
上,求直線/的方程.
21.(12分)已知/(x)=|x-l|+l,=.
12-3x,x>3
(1)解不等式/(x)42x+3;
(2)若方程/(x)=。有三個(gè)解,求實(shí)數(shù)。的取值范圍.
22.(10分)如圖,在矩形A5CO中,AB=2,BC=3,點(diǎn)E是邊A£>上一點(diǎn),S.AE=2ED,點(diǎn)”是鴕的中點(diǎn),
將△ABE沿著的折起,使點(diǎn)A運(yùn)動(dòng)到點(diǎn)S處,且滿足SC=SD.
(D證明:5”_1平面8。?!?;
(2)求二面角C—S3—£的余弦值.
參考答案
一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
1.C
【解析】
根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前〃項(xiàng)和公式,可得結(jié)果.
【詳解】
被5除余3且被7除余2的正整數(shù)構(gòu)成首項(xiàng)為23,
公差為5x7=35的等差數(shù)列,記數(shù)列{%}
則an=23+35(〃-1)=35/?-12
2
令4=35〃-12W2020,解得〃458行.
58x57
故該數(shù)列各項(xiàng)之和為58x23+------x35=59189.
2
故選:C.
【點(diǎn)睛】
本題考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題。
2.A
【解析】
分析:設(shè)/(M=g5)=f,貝”>0,把機(jī),〃用f表示,然后令設(shè)。="一〃,由導(dǎo)數(shù)求得〃。)的最小值.
詳解:設(shè)/O)=g(〃)=,,貝m=e'~',H=ln-+-=lnr-ln2+-,
222
m-n=e'~'-ln/+ln2--,令=e'~'-lnz+ln2--,
22
則/f(f)=e'T—1,〃⑺是(0,+8)上的增函數(shù),
tt
又"(1)=0,.?.當(dāng)re(o,l)時(shí),h\t)<Q,當(dāng),e(l,+oo)時(shí),h'⑴>0,
即獻(xiàn)f)在(0,1)上單調(diào)遞減,在(1,”)上單調(diào)遞增,人(1)是極小值也是最小值,
/z(l)=5+ln2,加一”的最小值是彳+ln2.
故選A.
點(diǎn)睛:本題易錯(cuò)選B,利用導(dǎo)數(shù)法求函數(shù)的最值,解題時(shí)學(xué)生可能不會(huì)將其中求人-。的最小值問題,通過構(gòu)造新函數(shù),
轉(zhuǎn)化為求函數(shù)〃(f)的最小值問題,另外通過二次求導(dǎo),確定函數(shù)的單調(diào)區(qū)間也很容易出錯(cuò).
3.B
【解析】
BEPD
由題意建立空間直角坐標(biāo)系,表示出各點(diǎn)坐標(biāo)后,利用(灰,而)=
cos即可得解.
【詳解】
???B4_L平面ABCD,底面ABQD是邊長(zhǎng)為2的正方形,
如圖建立空間直角坐標(biāo)系,由題意:
A(0,0,0),B(2,0,0),C(2,2,0),網(wǎng)0,0,后),D(0,2,0),
(出、
???E為PC的中點(diǎn),,E1,1,^-.
BE=-U,y,麗=(0,2,一句,
BEPD[2713
岳二
—J
2
???異面直線BE與PD所成角的余弦值為卜。5回,PD)\即為四.
故選:B.
【點(diǎn)睛】
本題考查了空間向量的應(yīng)用,考查了空間想象能力,屬于基礎(chǔ)題.
4.D
【解析】
根據(jù)面面關(guān)系判斷A;根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.
【詳解】
若平面a,B,Y,滿足aJLy,Z?1/,則a,夕可能相交,故A錯(cuò)誤;
命題“P:VxeR,1-尤2W1”的否定為力:3x0e/?,1-尤;>1,故B錯(cuò)誤;
PV4為真,說明至少一個(gè)為真命題,則不能推出。人4為真;。人4為真,說明都為真命題,貝1JPvq為真,
所以“命題為真”是“命題P八4為真”的必要不充分條件,故C錯(cuò)誤;
命題“若(x-l)e"+l=O,貝h=0”的逆否命題為:“若XHO,則(%-1孵+1。0”,故D正確;
故選D
【點(diǎn)睛】
本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.
5.C
【解析】
因答案A中的直線加,〃可以異面或相交,故不正確;答案B中的直線〃也成立,故不正確;答案C中的直線”
可以平移到平面A中,所以由面面垂直的判定定理可知兩平面外,互相垂直,是正確的;答案D中直線m也有可
能垂直于直線〃,故不正確.應(yīng)選答案C.
6.C
【解析】
寫出(X-,-)")展開式的通項(xiàng)公式&|=。、(-g)3°必,令10—2廠=4,即r=3,則可求系數(shù).
【詳解】
(X-1尸的展開式的通項(xiàng)公式為加=4產(chǎn)-「(-33'°-",令10-2r=4,即廠=3時(shí),系數(shù)為
品(一g)3=T5.故選C
【點(diǎn)睛】
本題考查二項(xiàng)式展開的通項(xiàng)公式,屬基礎(chǔ)題.
7.A
【解析】
由函數(shù)性質(zhì),結(jié)合特殊值驗(yàn)證,通過排除法求得結(jié)果.
【詳解】
1-r2
對(duì)于選項(xiàng)B,為奇函數(shù)可判斷B錯(cuò)誤;
X
e-x
對(duì)于選項(xiàng)c,當(dāng)X<—1時(shí),〃x)=<O,可判斷C錯(cuò)誤;
對(duì)于選項(xiàng)D,/(x)=±¥=1+-1,可知函數(shù)在第一象限的圖象無(wú)增區(qū)間,故D錯(cuò)誤;
尤-X尤-
故選:A.
【點(diǎn)睛】
本題考查已知函數(shù)的圖象判斷解析式問題,通過函數(shù)性質(zhì)及特殊值利用排除法是解決本題的關(guān)鍵,難度一般.
8.D
【解析】
作出不等式對(duì)應(yīng)的平面區(qū)域,由目標(biāo)函數(shù)的幾何意義,通過平移即可求z的最大值.
【詳解】
作出不等式組的可行域,如圖陰影部分,作直線乙:x+2y=0在可行域內(nèi)平移當(dāng)過點(diǎn)A時(shí),z=x+2),取得最大值.
\/3.L4>T10=0
/。一...「1
f3x-4y+10>0,、
由?!卑说茫篈(2,4)-X=10
2x+y-8<0
故選:D
【點(diǎn)睛】
本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,屬于基礎(chǔ)題.
9.B
【解析】
化簡(jiǎn)復(fù)數(shù),~由它是純虛數(shù),求得“,從而確定2a+2?.對(duì)應(yīng)的點(diǎn)的坐標(biāo).
1+Z
【詳解】
2?+2i=—2+2i,對(duì)應(yīng)點(diǎn)為(-2,2),在第二象限.
故選:B.
【點(diǎn)睛】
本題考查復(fù)數(shù)的除法運(yùn)算,考查復(fù)數(shù)的概念與幾何意義.本題屬于基礎(chǔ)題.
10.A
【解析】
設(shè)圓的標(biāo)準(zhǔn)方程,利用待定系數(shù)法一一求出。,戾「,從而求出圓的方程.
【詳解】
設(shè)圓的標(biāo)準(zhǔn)方程為(x-“)2+(y-b)1=產(chǎn),
由題意得圓心。(“力)為A,B的中點(diǎn),
根據(jù)中點(diǎn)坐標(biāo)公式可得。=—=:,
2222
又一空!53+2)2+(T2):=叵,所以圓的標(biāo)準(zhǔn)方程為:
222
?117
(X_萬(wàn))~+(y_])2=—,化簡(jiǎn)整理得『+y—x—y—8=0>
所以本題答案為A.
【點(diǎn)睛】
本題考查待定系數(shù)法求圓的方程,解題的關(guān)鍵是假設(shè)圓的標(biāo)準(zhǔn)方程,建立方程組,屬于基礎(chǔ)題.
11.D
【解析】
根據(jù)統(tǒng)計(jì)圖中數(shù)據(jù)的含義進(jìn)行判斷即可.
【詳解】
對(duì)A項(xiàng),由統(tǒng)計(jì)圖可得,2015年出口額和進(jìn)口額基本相等,而2016年到2019年出口額都大于進(jìn)口額,則A正確;
對(duì)B項(xiàng),由統(tǒng)計(jì)圖可得,2015年出口額最少,則B正確;
對(duì)C項(xiàng),由統(tǒng)計(jì)圖可得,2019年進(jìn)口增速都超過其余年份,則C正確;
對(duì)D項(xiàng),由統(tǒng)計(jì)圖可得,2015年到2016年出口增速是上升的,則D錯(cuò)誤;
故選:D
【點(diǎn)睛】
本題主要考查了根據(jù)條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖解決實(shí)際問題,屬于基礎(chǔ)題.
12.B
【解析】
根據(jù)正三棱柱的主視圖,以及長(zhǎng)度,可知該幾何體的底面正三角形的邊長(zhǎng),然后根據(jù)矩形的面積公式,可得結(jié)果.
【詳解】
由題可知:該幾何體的底面正三角形的邊長(zhǎng)為2
所以該正三棱柱的三個(gè)側(cè)面均為邊長(zhǎng)為2的正方形,
所以該正三棱柱的側(cè)面積為3x2x2=12
故選:B
【點(diǎn)睛】
本題考查正三棱柱側(cè)面積的計(jì)算以及三視圖的認(rèn)識(shí),關(guān)鍵在于求得底面正三角形的邊長(zhǎng),掌握一些常見的幾何體的三
視圖,比如:三棱錐,圓錐,圓柱等,屬基礎(chǔ)題.
二、填空題:本題共4小題,每小題5分,共20分。
13.231,321,301,1
【解析】
分個(gè)位數(shù)字是1、3兩種情況討論,即得解
【詳解】
0,1,2,3這4個(gè)數(shù)字所組成的無(wú)重復(fù)數(shù)字比210大的所有三位奇數(shù)有:
(1)當(dāng)個(gè)位數(shù)字是1時(shí),數(shù)字可以是231,321,301;
(2)當(dāng)個(gè)位數(shù)字是3時(shí)數(shù)字可以是1.
故答案為:231,321,301,1
【點(diǎn)睛】
本題考查了分類計(jì)數(shù)法的應(yīng)用,考查了學(xué)生分類討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.
14.2800.
【解析】
根據(jù)正態(tài)分布密度曲線性質(zhì),結(jié)合尸(86<X4100)=0.15求得P(X〉114)=;—0.15=0.35,即可得解.
【詳解】
根據(jù)正態(tài)分布X?N(100,</),且P(86VX<100)=0.15,
所以「(X〉114)=;-0.15=0.35
故該市有8000人參考,則估計(jì)成都市該次統(tǒng)考中成績(jī)X大于114分的人數(shù)為8000x0.35=2800.
故答案為:2800.
【點(diǎn)睛】
此題考查正態(tài)分布密度曲線性質(zhì)的理解辨析,根據(jù)曲線的對(duì)稱性求解概率,根據(jù)總?cè)藬?shù)求解成績(jī)大于114的人數(shù).
32
15.—兀
3
【解析】
根據(jù)題意,畫出空間幾何體,設(shè)BE,EC,的中點(diǎn)分別為M,N,0,并連接
AM,CM,AO,DN,NO,DO,OE,利用面面垂直的性質(zhì)及所給線段關(guān)系,可知幾何體AB8E的外接球的球
心為。,即可求得其外接球的體積.
【詳解】
由題可得八鉆石,ACDE,△BEC均為等腰直角三角形,如圖所示,
設(shè)BE,EC,6C的中點(diǎn)分別為N,O,
連接CM,AO,DN,NO,DO,OE,
則OM_LBE,ONICE.
因?yàn)槠矫鍭BEJ_平面BCE,平面CDE±平面BCE,
所以O(shè)M,平面ABE,ON上平面DEC,
易得OA=OB=OC=OD=OE=2,
則幾何體ABCDE的外接球的球心為。,半徑尺=2,
432
所以幾何體MCDE的外接球的體積為V=—%代=
33
32
故答案為:丁.
【點(diǎn)睛】
本題考查了空間幾何體的綜合應(yīng)用,折疊后空間幾何體的線面位置關(guān)系應(yīng)用,空間幾何體外接球的性質(zhì)及體積求法,
屬于中檔題.
16.135
【解析】
寫出展開式的通項(xiàng)公式,考慮當(dāng)x的指數(shù)為零時(shí),對(duì)應(yīng)的值即為常數(shù)項(xiàng).
【詳解】
卜一日)的展開式通項(xiàng)公式為:&=4.卜2廣1_叼.產(chǎn),,
令卜=4,所以C:?(一班了=135,所以常數(shù)項(xiàng)為135.
故答案為:135.
【點(diǎn)睛】
本題考查二項(xiàng)展開式中指定項(xiàng)系數(shù)的求解,難度較易.解答問題的關(guān)鍵是,能通過展開式通項(xiàng)公式分析常數(shù)項(xiàng)對(duì)應(yīng),?的
取值.
三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。
17.(1)證明見解析(2)立
3
【解析】
(1)證明ACJ_平面8CGg即平面4ACG,平面8CC5得證;(2)分別以C4,CB,BC所在直線為X軸,y軸.
軸,建立如圖所示的空間直角坐標(biāo)系C-X”,再利用向量方法求二面角A-g8-C的余弦值.
【詳解】
(1)證明:因?yàn)锽|C_L平面A5C,所以
因?yàn)锳C=BC=l,AB=4i.所以AC2+BC2=AB?.即ACYBC
又BC口耳。=C.所以AC_L平面BCC再
因?yàn)锳Cu平面AACG.所以平面4ACG,平面BCC&I
(2)解:由題可得BC,C4,C5兩兩垂直,所以分別以C4,CB,BC所在直線為x軸,y軸.軸,建立如圖所示的空間
直角坐標(biāo)系C-XJZ,則A(1,O,O),C(0,0,0),3(0,1,0),C(0,0,1),所以璃=(0,-1,1),通=(一1,1,0)
設(shè)平面ABB}的一個(gè)法向量為m=(x,y,z),
------------------------f-y+z=0
由m-BB.=0,6?243=0.得4
I[—%+y=0
令x=l,得加=(1,1,1)
又CAL平面C8片,所以平面。5片的一個(gè)法向量為CA=(1,0,0).
1
cos(m,CA)73=T
所以二面角A-8乃-C的余弦值為電.
3
【點(diǎn)睛】
本題主要考查空間幾何位置關(guān)系的證明,考查二面角的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.
18.見解析
【解析】
222
已知條件[:++卞=2,需要證明的是丁J+1J+要想利用柯西不等式,需要
i+x21+/i+z2i+xi+yi+z
222
xyz=3一〔言+上+急「1'則可以用柯西不等式.
--------7^----7的值'發(fā)現(xiàn)177+工+工
l+尤-1+y-l+z~1+/1+Z2
【詳解】
-------------7
\+x-\+y1+z-
x
iii,~,y1z.
..--------7H------7H---------=l--------+l--------7+l--------——I.
l+xl+yl+zl+xl+yl+z~
由柯西不等式得,
'fy2z2yj]1xyz
J+x2+l+y2+l+z2Jl^l+x2+1+y+1+z^-l^l+x2+l+y2+l+z2
、2
xyz
<2.
(l--+-/7-1-+--y-7-l-+--z7
xyzr-
——r+-^+——-<V2.
l+x-l+)2l+z-
【點(diǎn)睛】
本題考查柯西不等式的應(yīng)用,屬于基礎(chǔ)題.
19.(1)a=1,2=0;函數(shù)/(x)的單調(diào)遞減區(qū)間為(0,,],單調(diào)遞增區(qū)間為+8);(2)詳見解析.
【解析】
試題分析:⑴由題得/'(x)=a(l+lnx),根據(jù)曲線/(x)在點(diǎn)(1J⑴)處的切線方程,列出方程組,求得。力的值,
得到/(x)的解析式,即可求解函數(shù)的單調(diào)區(qū)間;
(2)由⑴得8(力=質(zhì)+,根據(jù)由8&)=8(々),整理得±±=]n匕>0,
X玉無(wú)2X
SD,轉(zhuǎn)化為函數(shù)u⑴-加的最值,即可作出證明.
試題解析:
(1)由題得,函數(shù)f(x)的定義域?yàn)?0,+紡),??(x)=a(l+lnx),
因?yàn)榍€f(x)在點(diǎn)(l,f(l))處的切線方程為y=x-l,
⑴=a=1,
所以《,/八I]匚八解得a=l,b=0.
/(l)=Hm+b=0,
令《i(x)=l+lnx=0,得x=L
e
I(1A
當(dāng)0<x<—時(shí),h,(x)<0,f(x)在區(qū)間0,一內(nèi)單調(diào)遞減;
e\
當(dāng)x>:時(shí),h,(x)>0,f(x)在區(qū)間(:,+8]內(nèi)單調(diào)遞增.
所以函數(shù)f(x)的單調(diào)遞減區(qū)間為(0,呂,單調(diào)遞增區(qū)間為
回=lnx+L
(2)由(1)得,g(x)=
XX
由g(xJ=g(X2)(X1<X2),得lnX|+"—=lnx2+一,即過餐=ln七?>().
X]X?X]X?X]
/\X)-X|?XXX.?x
要證/+為>2,需證(X]+X2)—」>21n」9,即證」9一一L>21n9^,
X]X?X]XjX?X]
xxxX
設(shè)」?=則要證上一一L>21n^-,等價(jià)于證:t-->21nt(t>l).
X[X]x2X]
11y(\\
令u(t)=t----21nt,則u'(t)=l+-y—=1—>0,
t',t2tItJ
.?.u(t)在區(qū)間(l,+8)內(nèi)單調(diào)遞增,u(t)>u(l)=O,
即t-;>21nt,故X]+X2>2.
20.(1)—+/=1(2)y=±^x+2
4-2
【解析】
(1)根據(jù)橢圓的離心率、橢圓上點(diǎn)的坐標(biāo)以及/一列方程,由此求得/,從,進(jìn)而求得橢圓的方程.
(2)設(shè)出直線/的方程,聯(lián)立直線/的方程和橢圓的方程,寫出韋達(dá)定理.根據(jù)平行四邊形的性質(zhì)以及向量加法的幾何
意義得到兩=函+礪,由此求得用點(diǎn)的坐標(biāo),將A8,”的坐標(biāo)代入橢圓方程,化簡(jiǎn)后可求得直線/的斜率,由
此求得直線/的方程.
【詳解】
(1)由橢圓的離心率為且,點(diǎn)(1,且)在橢圓上,所以£=正,1+工=1
S.a2-b2=c2
22a2a14b2
解得/=4,從=1,所以橢圓。的方程為三+產(chǎn)=].
4
(2)顯然直線/的斜率存在,設(shè)直線/的斜率為3則直線/的方程為了="+2,設(shè)
4+32—]
A(%,y),8口,%),M(x0,y0),由<4一消去:得(1+4公)/+16依+12=0,
y=fcx+2
g416k12
所以玉+々=一百'*2=由'
由已知得OM=04+08,所以〈,由于點(diǎn)A、B、M都在橢圓上,
所以「+犬=1,J+y;=i,,+y;=L比尸+(必+%)2=1,
展開有(?■+>;)+(;+y;)+y+zy%=L2+玉々+4Y必=o,
4-4k2
又乂乂=(3+2)(優(yōu)+2)=k2xx+2%(內(nèi)+X)+4=
t221+4公
124-4公
所以2++4x=0015=4/,
1+4公1+4公
經(jīng)檢驗(yàn)滿足A=(164)2一4(1+4/)x12=64左2-48>0,
故直線/的方程為y=±"5x+2.
2
【點(diǎn)睛】
本小題主要考查根據(jù)橢圓的離心率和橢圓上一點(diǎn)的坐標(biāo)求橢圓方程,考查直線和橢圓的位置關(guān)系,考查運(yùn)算求解能力,
屬于中檔題.
21.(1)[—,+oo);(2)(1,3).
3
【解析】
(1)對(duì)x分三種情況討論,分別去掉絕對(duì)值符號(hào),然后求解不等式組,再求并集即可得結(jié)果;(2)
2-x,x<1
尸(x)=卜,1?尤43,.作出函數(shù)E(x)的圖象,當(dāng)直線y=a與函數(shù)y=F(x)的圖象有三個(gè)公共點(diǎn)時(shí),方程
12-3x,x>3
尸(x)=a有三個(gè)解,由圖可得結(jié)果.
【詳解】
(1)不等式〃x)W2x+3,即為|x-l|+lW2x+3.
當(dāng)x之1時(shí),即化為x-l+lW2x+3,得xi—3,
此時(shí)不等式的解集為
當(dāng)x<l時(shí),即化為—(x—l)+l?2x+3,解得工
此時(shí)不等式的解集為
綜上,不等式/(x)W2x+3的解集為-g,+8).
|x-11+1,x43
(2)F(x)=
12-3x,x>3,
2-x,x<l
即F(x)=<x,l<x<3,.
12-3x,x>3
作出函數(shù)尸(x)的圖象如圖所示,
當(dāng)直線y=。與函數(shù)y
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024自然人之間借款合同范本
- 2025年度城市綜合體場(chǎng)地合作經(jīng)營(yíng)合同
- 2025年度文化產(chǎn)業(yè)園物業(yè)管理與文化活動(dòng)策劃服務(wù)協(xié)議3篇
- 2024版教育機(jī)構(gòu)裝潢工程合同樣本
- 二零二四年度9A文智能家居系統(tǒng)定制開發(fā)合同
- 2024版環(huán)評(píng)工程服務(wù)合同范本大全
- 2025年度生態(tài)農(nóng)業(yè)用地承包種植合作合同規(guī)范文本3篇
- 二零二四年度BIM可視化展示與演示合同
- 二零二五年度廁所改造工程環(huán)保標(biāo)準(zhǔn)制定合同2篇
- 二零二五年度金融借款合同電子化轉(zhuǎn)型的法律挑戰(zhàn)3篇
- 離職分析報(bào)告
- 春節(jié)家庭用電安全提示
- 醫(yī)療糾紛預(yù)防和處理?xiàng)l例通用課件
- 廚邦醬油推廣方案
- 乳腺癌診療指南(2024年版)
- 高三數(shù)學(xué)寒假作業(yè)1
- 保險(xiǎn)產(chǎn)品創(chuàng)新與市場(chǎng)定位培訓(xùn)課件
- (完整文本版)體檢報(bào)告單模版
- 1例左舌鱗癌手術(shù)患者的圍手術(shù)期護(hù)理體會(huì)
- (完整)100道兩位數(shù)加減兩位數(shù)口算題(難)
- 鋼結(jié)構(gòu)牛腿計(jì)算
評(píng)論
0/150
提交評(píng)論