版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆福建省長樂高級中學高三上數(shù)學期末復(fù)習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.五名志愿者到三個不同的單位去進行幫扶,每個單位至少一人,則甲、乙兩人不在同一個單位的概率為()A. B. C. D.2.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立3.函數(shù)在上的大致圖象是()A. B.C. D.4.若函數(shù)的定義域為M={x|-2≤x≤2},值域為N={y|0≤y≤2},則函數(shù)的圖像可能是()A. B. C. D.5.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個單位長度而得到,則函數(shù)的解析式為()A. B.C. D.6.下列判斷錯誤的是()A.若隨機變量服從正態(tài)分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機變量服從二項分布:,則D.是的充分不必要條件7.已知復(fù)數(shù)是正實數(shù),則實數(shù)的值為()A. B. C. D.8.計算等于()A. B. C. D.9.已知集合,若,則實數(shù)的取值范圍為()A. B. C. D.10.設(shè)遞增的等比數(shù)列的前n項和為,已知,,則()A.9 B.27 C.81 D.11.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.12.已知函數(shù),,則的極大值點為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù),對任意,有,且,則______.14.拋物線上到其焦點距離為5的點有_______個.15.已知是偶函數(shù),則的最小值為___________.16.已知函數(shù)對于都有,且周期為2,當時,,則________________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點是拋物線的頂點,,是上的兩個動點,且.(1)判斷點是否在直線上?說明理由;(2)設(shè)點是△的外接圓的圓心,點到軸的距離為,點,求的最大值.18.(12分)已知函數(shù),且.(1)求的解析式;(2)已知,若對任意的,總存在,使得成立,求的取值范圍.19.(12分)某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎一次.具體規(guī)則是從裝有2個紅球、2個白球的箱子隨機取出3個球(逐個有放回地抽?。?,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個數(shù)3210實際付款7折8折9折原價(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購物金額為180元,選擇哪種方案更劃算?20.(12分)已知橢圓:的兩個焦點是,,在橢圓上,且,為坐標原點,直線與直線平行,且與橢圓交于,兩點.連接、與軸交于點,.(1)求橢圓的標準方程;(2)求證:為定值.21.(12分)已知數(shù)列的各項均為正數(shù),且滿足.(1)求,及的通項公式;(2)求數(shù)列的前項和.22.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)函數(shù),若對于,使得成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
三個單位的人數(shù)可能為2,2,1或3,1,1,求出甲、乙兩人在同一個單位的概率,利用互為對立事件的概率和為1即可解決.【詳解】由題意,三個單位的人數(shù)可能為2,2,1或3,1,1;基本事件總數(shù)有種,若為第一種情況,且甲、乙兩人在同一個單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個單位,共有種,故甲、乙兩人在同一個單位的概率為,故甲、乙兩人不在同一個單位的概率為.故選:D.【點睛】本題考查古典概型的概率公式的計算,涉及到排列與組合的應(yīng)用,在正面情況較多時,可以先求其對立事件,即甲、乙兩人在同一個單位的概率,本題有一定難度.2、A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點:全稱命題.3、D【解析】
討論的取值范圍,然后對函數(shù)進行求導(dǎo),利用導(dǎo)數(shù)的幾何意義即可判斷.【詳解】當時,,則,所以函數(shù)在上單調(diào)遞增,令,則,根據(jù)三角函數(shù)的性質(zhì),當時,,故切線的斜率變小,當時,,故切線的斜率變大,可排除A、B;當時,,則,所以函數(shù)在上單調(diào)遞增,令,,當時,,故切線的斜率變大,當時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數(shù)的圖像,考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系以及導(dǎo)數(shù)的幾何意義,屬于中檔題.4、B【解析】因為對A不符合定義域當中的每一個元素都有象,即可排除;對B滿足函數(shù)定義,故符合;對C出現(xiàn)了定義域當中的一個元素對應(yīng)值域當中的兩個元素的情況,不符合函數(shù)的定義,從而可以否定;對D因為值域當中有的元素沒有原象,故可否定.故選B.5、A【解析】
由圖根據(jù)三角函數(shù)圖像的對稱性可得,利用周期公式可得,再根據(jù)圖像過,即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因為函數(shù)的圖象由圖象向右平移個單位長度而得到,所以.故選:A【點睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎(chǔ)題.6、D【解析】
根據(jù)正態(tài)分布、空間中點線面的位置關(guān)系、充分條件與必要條件的判斷、二項分布及不等式的性質(zhì)等知識,依次對四個選項加以分析判斷,進而可求解.【詳解】對于選項,若隨機變量服從正態(tài)分布,根據(jù)正態(tài)分布曲線的對稱性,有,故選項正確,不符合題意;對于選項,已知直線平面,直線平面,則當時一定有,充分性成立,而當時,不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項正確,不符合題意;對于選項,若隨機變量服從二項分布:,則,故選項正確,不符合題意;對于選項,,僅當時有,當時,不成立,故充分性不成立;若,僅當時有,當時,不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項不正確,符合題意.故選:D【點睛】本題考查正態(tài)分布、空間中點線面的位置關(guān)系、充分條件與必要條件的判斷、二項分布及不等式的性質(zhì)等知識,考查理解辨析能力與運算求解能力,屬于基礎(chǔ)題.7、C【解析】
將復(fù)數(shù)化成標準形式,由題意可得實部大于零,虛部等于零,即可得到答案.【詳解】因為為正實數(shù),所以且,解得.故選:C【點睛】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.8、A【解析】
利用誘導(dǎo)公式、特殊角的三角函數(shù)值,結(jié)合對數(shù)運算,求得所求表達式的值.【詳解】原式.故選:A【點睛】本小題主要考查誘導(dǎo)公式,考查對數(shù)運算,屬于基礎(chǔ)題.9、A【解析】
解一元二次不等式化簡集合的表示,求解函數(shù)的定義域化簡集合的表示,根據(jù)可以得到集合、之間的關(guān)系,結(jié)合數(shù)軸進行求解即可.【詳解】,.因為,所以有,因此有.故選:A【點睛】本題考查了已知集合運算的結(jié)果求參數(shù)取值范圍問題,考查了解一元二次不等式,考查了函數(shù)的定義域,考查了數(shù)學運算能力.10、A【解析】
根據(jù)兩個已知條件求出數(shù)列的公比和首項,即得的值.【詳解】設(shè)等比數(shù)列的公比為q.由,得,解得或.因為.且數(shù)列遞增,所以.又,解得,故.故選:A【點睛】本題主要考查等比數(shù)列的通項和求和公式,意在考查學生對這些知識的理解掌握水平.11、A【解析】
觀察可知,這個幾何體由兩部分構(gòu)成,:一個半圓柱體,底面圓的半徑為1,高為2;一個半球體,半徑為1,按公式計算可得體積?!驹斀狻吭O(shè)半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A?!军c睛】本題通過三視圖考察空間識圖的能力,屬于基礎(chǔ)題。12、A【解析】
求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)數(shù)為零,根據(jù)函數(shù)單調(diào)性,求得極大值點即可.【詳解】因為,故可得,令,因為,故可得或,則在區(qū)間單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,故的極大值點為.故選:A.【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)的極值點,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】
由二項式定理及展開式系數(shù)的求法得,又,所以,令得:,所以,得解.【詳解】由,且,則,又,所以,令得:,所以,故答案為:.【點睛】本題考查了二項式定理及展開式系數(shù)的求法,意在考查學生對這些知識的理解掌握水平.14、2【解析】
設(shè)符合條件的點,由拋物線的定義可得,即可求解.【詳解】設(shè)符合條件的點,則,所以符合條件的點有2個.故答案為:2【點睛】本題考查拋物線的定義的應(yīng)用,考查拋物線的焦半徑.15、2【解析】
由偶函數(shù)性質(zhì)可得,解得,再結(jié)合基本不等式即可求解【詳解】令得,所以,當且僅當時取等號.故答案為:2【點睛】考查函數(shù)的奇偶性、基本不等式,屬于基礎(chǔ)題16、【解析】
利用,且周期為2,可得,得.【詳解】∵,且周期為2,∴,又當時,,∴,故答案為:【點睛】本題考查函數(shù)的周期性與對稱性的應(yīng)用,考查轉(zhuǎn)化能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)不在,證明見詳解;(2)【解析】
(1)假設(shè)直線方程,并于拋物線方程聯(lián)立,結(jié)合韋達定理,計算,可得,然后驗證可得結(jié)果.(2)分別計算線段中垂線的方程,然后聯(lián)立,根據(jù)(1)的條件可得點的軌跡方程,然后可得焦點,結(jié)合拋物線定義可得,計算可得結(jié)果.【詳解】(1)設(shè)直線方程,根據(jù)題意可知直線斜率一定存在,則則由所以將代入上式化簡可得,所以則直線方程為,所以直線過定點,所以可知點不在直線上.(2)設(shè)線段的中點為線段的中點為則直線的斜率為,直線的斜率為可知線段的中垂線的方程為由,所以上式化簡為即線段的中垂線的方程為同理可得:線段的中垂線的方程為則由(1)可知:所以即,所以點軌跡方程為焦點為,所以當三點共線時,有最大所以【點睛】本題考查直線于拋物線的綜合應(yīng)用,第(1)問中難點在于計算處,第(2)問中關(guān)鍵在于得到點的軌跡方程,直線與圓錐曲線的綜合常常要聯(lián)立方程,結(jié)合韋達定理,屬難題.18、(1);(2)【解析】
(1)由,可求出的值,進而可求得的解析式;(2)分別求得和的值域,再結(jié)合兩個函數(shù)的值域間的關(guān)系可求出的取值范圍.【詳解】(1)因為,所以,解得,故.(2)因為,所以,所以,則,圖象的對稱軸是.因為,所以,則,解得,故的取值范圍是.【點睛】本題考查了三角函數(shù)的恒等變換,考查了二次函數(shù)及三角函數(shù)值域的求法,考查了學生的計算求解能力,屬于中檔題.19、(1)(2)選擇方案二更為劃算【解析】
(1)計算顧客獲得7折優(yōu)惠的概率,獲得8折優(yōu)惠的概率,相加得到答案.(2)選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,計算概率得到數(shù)學期望,比較大小得到答案.【詳解】(1)該顧客獲得7折優(yōu)惠的概率,該顧客獲得8折優(yōu)惠的概率,故該顧客獲得7折或8折優(yōu)惠的概率.(2)若選擇方案一,則付款金額為.若選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,,則.因為,所以選擇方案二更為劃算.【點睛】本題考查了概率的計算,數(shù)學期望,意在考查學生的計算能力和應(yīng)用能力.20、(1)(2)證明見解析【解析】
(1)根據(jù)橢圓的定義可得,將代入橢圓方程,即可求得的值,求得橢圓方程;(2)設(shè)直線的方程,代入橢圓方程,求得直線和的方程,求得和的橫坐標,表示出,根據(jù)韋達定理即可求證為定值.【詳解】(1)因為,由橢圓的定義得,,點在橢圓上,代入橢圓方程,解得,所以的方程為;(2)證明:設(shè),,直線的斜率為,設(shè)直線的方程為,聯(lián)立方程組,消去,整理得,所以,,直線的直線方程為,令,則,同理,所以:,代入整理得,所以為定值.【點睛】本小題主要考查橢圓標準方程的求法,考查直線和橢圓的位置關(guān)系,考查橢圓中的定值問題,屬于中檔題.21、(1);.;(2)【解析】
(1)根據(jù)題意,知,且,令和即可求出,,以及運用遞推關(guān)系求出的通項公式;(2)通過定義法證明出是首項為8,公比為4的等比數(shù)列,利用等比數(shù)列的前項和公式,即可求得的前項和.【詳解】解:(1)由題可知,,且,當時,,則,當時,,,由已知可得,且,∴的通項公式:.(2)設(shè),則,所以,,得是首項為8,公比為4的等比數(shù)列,所以數(shù)列的前項和為:,即,所以數(shù)列的前項和:.【點睛】本題考查通過遞推關(guān)系求數(shù)列的通項公式,以及
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡(luò)營銷勞動合同三篇
- 高速公路貨物運輸合同三篇
- 營銷行業(yè)安全管理工作總結(jié)
- 2001年河南高考化學真題及答案(圖片版)
- DB32∕T 3512-2019 公路協(xié)同巡查管理系統(tǒng)建設(shè)技術(shù)規(guī)范
- 2024年美術(shù)教案范例
- 農(nóng)田水利工程招標合同(2篇)
- 【部編版九下歷史】知識清單
- DB33T 2188.7-2019 大型賽會志愿服務(wù)崗位規(guī)范 第7部分:文藝活動志愿服務(wù)
- 2025附條件買賣合同書
- 2024午托承包合同-校園內(nèi)學生午休服務(wù)協(xié)議3篇
- 馬克思主義基本原理+2024秋+試題 答案 國開
- 蘇州大學《線性代數(shù)與解析幾何》2023-2024學年第一學期期末試卷
- 《地震災(zāi)害及其防治》課件
- 2024年版電商平臺入駐商家服務(wù)與銷售分成合同
- 蜜雪冰城合同范例
- 小紅書種草營銷師(初級)認證考試真題試題庫(含答案)
- LPG液化氣充裝站介質(zhì)分析操作規(guī)程 202412
- 養(yǎng)老院環(huán)境衛(wèi)生保潔方案
- 2024年WPS計算機二級考試題庫350題(含答案)
- 2024年5G網(wǎng)絡(luò)覆蓋工程分包合同
評論
0/150
提交評論