版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆廣東省揭陽市普寧市重點達標名校中考三模數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.甲、乙兩輛汽車沿同一路線從A地前往B地,甲車以a千米/時的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以2a千米/時的速度繼續(xù)行駛;乙車在甲車出發(fā)2小時后勻速前往B地,比甲車早30分鐘到達.到達B地后,乙車按原速度返回A地,甲車以2a千米/時的速度返回A地.設甲、乙兩車與A地相距s(千米),甲車離開A地的時間為t(小時),s與t之間的函數(shù)圖象如圖所示.下列說法:①a=40;②甲車維修所用時間為1小時;③兩車在途中第二次相遇時t的值為5.25;④當t=3時,兩車相距40千米,其中不正確的個數(shù)為()A.0個 B.1個 C.2個 D.3個2.已知x﹣2y=3,那么代數(shù)式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.93.如圖,已知正方形ABCD的邊長為12,BE=EC,將正方形邊CD沿DE折疊到DF,延長EF交AB于G,連接DG,現(xiàn)在有如下4個結論:①≌;②;③∠GDE=45°;④DG=DE在以上4個結論中,正確的共有()個A.1個 B.2個 C.3個 D.4個4.港珠澳大橋目前是全世界最長的跨海大橋,其主體工程“海中橋隧”全長35578米,數(shù)據(jù)35578用科學記數(shù)法表示為()A.35.578×103 B.3.5578×104C.3.5578×105 D.0.35578×1055.如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點C沿順時針方向旋轉后得到三角形A′B′C,若點B′恰好落在線段AB上,AC、A′B′交于點O,則∠COA′的度數(shù)是()A.50° B.60° C.70° D.80°6.下列計算正確的是()A.(a2)3=a6 B.a2?a3=a6 C.a3+a4=a7 D.(ab)3=ab37.若點A(1+m,1﹣n)與點B(﹣3,2)關于y軸對稱,則m+n的值是()A.﹣5B.﹣3C.3D.18.將直線y=﹣x+a的圖象向右平移2個單位后經(jīng)過點A(3,3),則a的值為()A.4B.﹣4C.2D.﹣29.如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,則下列結論,①c<0,②2a+b=0;③a+b+c=0,④b2–4ac<0,其中正確的有()A.1個 B.2個 C.3個 D.410.-10-4的結果是()A.-7B.7C.-14D.1311.如圖,將一正方形紙片沿圖(1)、(2)的虛線對折,得到圖(3),然后沿圖(3)中虛線的剪去一個角,展開得平面圖形(4),則圖(3)的虛線是()A. B. C. D.12.將拋物線y=﹣(x+1)2+4平移,使平移后所得拋物線經(jīng)過原點,那么平移的過程為()A.向下平移3個單位 B.向上平移3個單位C.向左平移4個單位 D.向右平移4個單位二、填空題:(本大題共6個小題,每小題4分,共24分.)13.新田為實現(xiàn)全縣“脫貧摘帽”,2018年2月已統(tǒng)籌整合涉農資金235000000元,撬動800000000元金融資本參與全縣脫貧攻堅工作,請將235000000用科學記數(shù)法表示為___.14.因式分解:.15.如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉,使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為_____.16.為了了解貫徹執(zhí)行國家提倡的“陽光體育運動”的實施情況,將某班50名同學一周的體育鍛煉情況繪制成了如圖所示的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的數(shù)據(jù),該班50名同學一周參加體育鍛煉時間的中位數(shù)與眾數(shù)之和為_____.17.計算:(π﹣3)0+(﹣)﹣1=_____.18.一元二次方程x2﹣4=0的解是._________三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)小新家、小華家和書店依次在東風大街同一側(忽略三者與東風大街的距離).小新小華兩人同時各自從家出發(fā)沿東風大街勻速步行到書店買書,已知小新到達書店用了20分鐘,小華的步行速度是40米/分,設小新、小華離小華家的距離分別為y1(米)、y2(米),兩人離家后步行的時間為x(分),y1與x的函數(shù)圖象如圖所示,根據(jù)圖象解決下列問題:(1)小新的速度為_____米/分,a=_____;并在圖中畫出y2與x的函數(shù)圖象(2)求小新路過小華家后,y1與x之間的函數(shù)關系式.(3)直接寫出兩人離小華家的距離相等時x的值.20.(6分)某校檢測學生跳繩水平,抽樣調查了部分學生的“1分鐘跳繩”成績,并制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖(1)D組的人數(shù)是人,補全頻數(shù)分布直方圖,扇形圖中m=;(2)本次調查數(shù)據(jù)中的中位數(shù)落在組;(3)如果“1分鐘跳繩”成績大于或等于120次為優(yōu)秀,那么該校4500名學生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有多少人?21.(6分)解方程:x2-4x-5=022.(8分)如圖,將矩形OABC放在平面直角坐標系中,O為原點,點A在x軸的正半軸上,B(8,6),點D是射線AO上的一點,把△BAD沿直線BD折疊,點A的對應點為A′.(1)若點A′落在矩形的對角線OB上時,OA′的長=;(2)若點A′落在邊AB的垂直平分線上時,求點D的坐標;(3)若點A′落在邊AO的垂直平分線上時,求點D的坐標(直接寫出結果即可).23.(8分)如圖1,在正方形ABCD中,E是邊BC的中點,F(xiàn)是CD上一點,已知∠AEF=90°.(1)求證:;(2)平行四邊形ABCD中,E是邊BC上一點,F(xiàn)是邊CD上一點,∠AFE=∠ADC,∠AEF=90°.①如圖2,若∠AFE=45°,求的值;②如圖3,若AB=BC,EC=3CF,直接寫出cos∠AFE的值.24.(10分)如圖,已知點E,F(xiàn)分別是?ABCD的對角線BD所在直線上的兩點,BF=DE,連接AE,CF,求證:CF=AE,CF∥AE.25.(10分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,點D在AB上,DE⊥EB.(1)求證:AC是△BDE的外接圓的切線;(2)若AD=23,AE=6,求EC的長.26.(12分)列方程或方程組解應用題:去年暑期,某地由于暴雨導致電路中斷,該地供電局組織電工進行搶修.供電局距離搶修工地15千米.搶修車裝載著所需材料先從供電局出發(fā),10分鐘后,電工乘吉普車從同一地點出發(fā),結果他們同時到達搶修工地.已知吉普車速度是搶修車速度的1.5倍,求吉普車的速度.27.(12分)如圖,在平面直角坐標系中,A為y軸正半軸上一點,過點A作x軸的平行線,交函數(shù)的圖象于B點,交函數(shù)的圖象于C,過C作y軸和平行線交BO的延長線于D.(1)如果點A的坐標為(0,2),求線段AB與線段CA的長度之比;(2)如果點A的坐標為(0,a),求線段AB與線段CA的長度之比;(3)在(1)條件下,四邊形AODC的面積為多少?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】解:①由函數(shù)圖象,得a=120÷3=40,故①正確,②由題意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲車維修的時間為1小時;故②正確,③如圖:∵甲車維修的時間是1小時,∴B(4,120).∵乙在甲出發(fā)2小時后勻速前往B地,比甲早30分鐘到達.∴E(5,240).∴乙行駛的速度為:240÷3=80,∴乙返回的時間為:240÷80=3,∴F(8,0).設BC的解析式為y1=k1t+b1,EF的解析式為y2=k2t+b2,由圖象得,,,解得,,∴y1=80t﹣200,y2=﹣80t+640,當y1=y2時,80t﹣200=﹣80t+640,t=5.2.∴兩車在途中第二次相遇時t的值為5.2小時,故弄③正確,④當t=3時,甲車行的路程為:120km,乙車行的路程為:80×(3﹣2)=80km,∴兩車相距的路程為:120﹣80=40千米,故④正確,故選A.2、A【解題分析】
解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故選A.3、C【解題分析】【分析】根據(jù)正方形的性質和折疊的性質可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過勾股定理列方程求出AG=4,BG=8,根據(jù)全等三角形性質可求得∠GDE==45?,再抓住△BEF是等腰三角形,而△GED顯然不是等腰三角形,判斷④是錯誤的.【題目詳解】由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正確;∵正方形邊長是12,∴BE=EC=EF=6,設AG=FG=x,則EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正確;∵△ADG≌△FDG,△DCE≌△DFE,∴∠ADG=∠FDG,∠FDE=∠CDE∴∠GDE==45?.③正確;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④錯誤;∴正確說法是①②③故選:C【題目點撥】本題綜合性較強,考查了翻折變換的性質和正方形的性質,全等三角形的判定與性質,勾股定理,有一定的難度.4、B【解題分析】
科學計數(shù)法是a×,且,n為原數(shù)的整數(shù)位數(shù)減一.【題目詳解】解:35578=3.5578×,故選B.【題目點撥】本題主要考查的是利用科學計數(shù)法表示較大的數(shù),屬于基礎題型.理解科學計數(shù)法的表示方法是解題的關鍵.5、B【解題分析】試題分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋轉的性質可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故選B.考點:旋轉的性質.6、A【解題分析】分析:根據(jù)冪的乘方、同底數(shù)冪的乘法、積的乘方公式即可得出答案.詳解:A、冪的乘方法則,底數(shù)不變,指數(shù)相乘,原式計算正確;B、同底數(shù)冪的乘法,底數(shù)不變,指數(shù)相加,原式=,故錯誤;C、不是同類項,無法進行加法計算;D、積的乘方等于乘方的積,原式=,計算錯誤;故選A.點睛:本題主要考查的是冪的乘方、同底數(shù)冪的乘法、積的乘方計算法則,屬于基礎題型.理解各種計算法則是解題的關鍵.7、D【解題分析】【分析】根據(jù)關于y軸的對稱點的坐標特點:橫坐標互為相反數(shù),縱坐標不變,據(jù)此求出m、n的值,代入計算可得.【題目詳解】∵點A(1+m,1﹣n)與點B(﹣3,2)關于y軸對稱,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故選D.【題目點撥】本題考查了關于y軸對稱的點,熟練掌握關于y軸對稱的兩點的橫坐標互為相反數(shù),縱坐標不變是解題的關鍵.8、A【解題分析】
直接根據(jù)“左加右減”的原則求出平移后的解析式,然后把A(3,3)代入即可求出a的值.【題目詳解】由“右加左減”的原則可知,將直線y=-x+b向右平移2個單位所得直線的解析式為:y=-x+b+2,把A(3,3)代入,得3=-3+b+2,解得b=4.故選A.【題目點撥】本題考查了一次函數(shù)圖象的平移,一次函數(shù)圖象的平移規(guī)律是:①y=kx+b向左平移m個單位,是y=k(x+m)+b,向右平移m個單位是y=k(x-m)+b,即左右平移時,自變量x左加右減;②y=kx+b向上平移n個單位,是y=kx+b+n,向下平移n個單位是y=kx+b-n,即上下平移時,b的值上加下減.9、B【解題分析】
由拋物線的開口方向判斷a與1的關系,由拋物線與y軸的交點判斷c與1的關系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【題目詳解】①拋物線與y軸交于負半軸,則c<1,故①正確;②對稱軸x1,則2a+b=1.故②正確;③由圖可知:當x=1時,y=a+b+c<1.故③錯誤;④由圖可知:拋物線與x軸有兩個不同的交點,則b2﹣4ac>1.故④錯誤.綜上所述:正確的結論有2個.故選B.【題目點撥】本題考查了圖象與二次函數(shù)系數(shù)之間的關系,會利用對稱軸的值求2a與b的關系,以及二次函數(shù)與方程之間的轉換,根的判別式的熟練運用.10、C【解題分析】解:-10-4=-1.故選C.11、D【解題分析】
本題關鍵是正確分析出所剪時的虛線與正方形紙片的邊平行.【題目詳解】要想得到平面圖形(4),需要注意(4)中內部的矩形與原來的正方形紙片的邊平行,故剪時,虛線也與正方形紙片的邊平行,所以D是正確答案,故本題正確答案為D選項.【題目點撥】本題考查了平面圖形在實際生活中的應用,有良好的空間想象能力過動手能力是解題關鍵.12、A【解題分析】將拋物線平移,使平移后所得拋物線經(jīng)過原點,若左右平移n個單位得到,則平移后的解析式為:,將(0,0)代入后解得:n=-3或n=1,所以向左平移1個單位或向右平移3個單位后拋物線經(jīng)過原點;若上下平移m個單位得到,則平移后的解析式為:,將(0,0)代入后解得:m=-3,所以向下平移3個單位后拋物線經(jīng)過原點,故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2.35×1【解題分析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】解:將235000000用科學記數(shù)法表示為:2.35×1.故答案為:2.35×1.【題目點撥】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.14、.【解題分析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應用平方差公式分解即可:.15、【解題分析】
直接利用相似三角形的判定與性質得出△ONC1三邊關系,再利用勾股定理得出答案.【題目詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負數(shù)舍去),則NO=,NC1=,故點C的對應點C1的坐標為:(﹣,).故答案為(﹣,).【題目點撥】此題主要考查了矩形的性質以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關鍵.16、17【解題分析】∵8是出現(xiàn)次數(shù)最多的,∴眾數(shù)是8,∵這組數(shù)據(jù)從小到大的順序排列,處于中間位置的兩個數(shù)都是9,∴中位數(shù)是9,所以中位數(shù)與眾數(shù)之和為8+9=17.故答案為17小時.17、-1【解題分析】
先計算0指數(shù)冪和負指數(shù)冪,再相減.【題目詳解】(π﹣3)0+(﹣)﹣1,=1﹣3,=﹣1,故答案是:﹣1.【題目點撥】考查了0指數(shù)冪和負指數(shù)冪,解題關鍵是運用任意數(shù)的0次冪為1,a-1=.18、x=±1【解題分析】移項得x1=4,∴x=±1.故答案是:x=±1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)60;960;圖見解析;(2)y1=60x﹣240(4≤x≤20);(3)兩人離小華家的距離相等時,x的值為2.4或12.【解題分析】
(1)先根據(jù)小新到小華家的時間和距離即可求得小新的速度和小華家離書店的距離,然后根據(jù)小華的速度即可畫出y2與x的函數(shù)圖象;(2)設所求函數(shù)關系式為y1=kx+b,由圖可知函數(shù)圖像過點(4,0),(20,960),則將兩點坐標代入求解即可得到函數(shù)關系式;(3)分小新還沒到小華家和小新過了小華家兩種情況,然后分別求出x的值即可.【題目詳解】(1)由圖可知,小新離小華家240米,用4分鐘到達,則速度為240÷4=60米/分,小新按此速度再走16分鐘到達書店,則a=16×60=960米,小華到書店的時間為960÷40=24分鐘,則y2與x的函數(shù)圖象為:故小新的速度為60米/分,a=960;(2)當4≤x≤20時,設所求函數(shù)關系式為y1=kx+b(k≠0),將點(4,0),(20,960)代入得:,解得:,∴y1=60x﹣240(4≤x≤20時)(3)由圖可知,小新到小華家之前的函數(shù)關系式為:y=240﹣6x,①當兩人分別在小華家兩側時,若兩人到小華家距離相同,則240﹣6x=40x,解得:x=2.4;②當小新經(jīng)過小華家并追上小華時,兩人到小華家距離相同,則60x﹣240=40x,解得:x=12;故兩人離小華家的距離相等時,x的值為2.4或12.20、(1)16、84°;(2)C;(3)該校4500名學生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有3000(人)【解題分析】
(1)根據(jù)百分比=所長人數(shù)÷總人數(shù),圓心角=百分比,計算即可;(2)根據(jù)中位數(shù)的定義計算即可;(3)用一半估計總體的思考問題即可;【題目詳解】(1)由題意總人數(shù)人,D組人數(shù)人;B組的圓心角為;(2)根據(jù)A組6人,B組14人,C組19人,D組16人,E組5人可知本次調查數(shù)據(jù)中的中位數(shù)落在C組;(3)該校4500名學生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有人.【題目點撥】本題主要考查了數(shù)據(jù)的統(tǒng)計,熟練掌握扇形圖圓心角度數(shù)求解方法,總體求解方法等相關內容是解決本題的關鍵.21、x1="-1,"x2=5【解題分析】根據(jù)十字相乘法因式分解解方程即可.22、(1)1;(2)點D(8﹣23,0);(3)點D的坐標為(35﹣1,0)或(﹣35﹣1,0).【解題分析】分析:(Ⅰ)由點B的坐標知OA=8、AB=1、OB=10,根據(jù)折疊性質可得BA=BA′=1,據(jù)此可得答案;(Ⅱ)連接AA′,利用折疊的性質和中垂線的性質證△BAA′是等邊三角形,可得∠A′BD=∠ABD=30°,據(jù)此知AD=ABtan∠ABD=23,繼而可得答案;(Ⅲ)分點D在OA上和點D在AO延長線上這兩種情況,利用相似三角形的判定和性質分別求解可得.詳解:(Ⅰ)如圖1,由題意知OA=8、AB=1,∴OB=10,由折疊知,BA=BA′=1,∴OA′=1.故答案為1;(Ⅱ)如圖2,連接AA′.∵點A′落在線段AB的中垂線上,∴BA=AA′.∵△BDA′是由△BDA折疊得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等邊三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=23,∴OD=OA﹣AD=8﹣23,∴點D(8﹣23,0);(Ⅲ)①如圖3,當點D在OA上時.由旋轉知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴BM=AN=12OA=4,∴A′M=A'B2-B∴A′N=MN﹣A′M=AB﹣A′M=1﹣25,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,則A'MDN=BMA'解得:DN=35﹣5,則OD=ON+DN=4+35﹣5=35﹣1,∴D(35﹣1,0);②如圖4,當點D在AO延長線上時,過點A′作x軸的平行線交y軸于點M,延長AB交所作直線于點N,則BN=CM,MN=BC=OA=8,由旋轉知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴A′M=A′N=12MN則MC=BN=A'B2-A'N2=25,∴MO由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,則MEA'N=MA'NB解得:ME=855,則OE=MO﹣ME=1+∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴DOA'M=OEME,即解得:DO=33+1,則點D的坐標為(﹣35﹣1,0).綜上,點D的坐標為(35﹣1,0)或(﹣35﹣1,0).點睛:本題主要考查四邊形的綜合問題,解題的關鍵是熟練掌握折疊變換的性質、矩形的性質、相似三角形的判定與性質及勾股定理等知識點.23、(1)見解析;(2)①;②cos∠AFE=【解題分析】
(1)用特殊值法,設,則,證,可求出CF,DF的長,即可求出結論;(2)①如圖2,過F作交AD于點G,證和是等腰直角三角形,證,求出的值,即可寫出的值;②如圖3,作交AD于點T,作于H,證,設CF=2,則CE=6,可設AT=x,則TF=3x,,,分別用含x的代數(shù)式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出結論.【題目詳解】(1)設BE=EC=2,則AB=BC=4,∵,∴,∵,∴∠FEC=∠EAB,又∴,∴,∴,即,∴CF=1,則,∴;(2)①如圖2,過F作交AD于點G,∵,∴和是等腰直角三角形,∴,,∴∠AGF=∠C,又∵,∴∠GAF=∠CFE,∴,∴,又∵GF=DF,∴;②如圖3,作交AD于點T,作于H,則,∴,∴∠ATF=∠C,又∵,且∠D=∠AFE,∴∠TAF=∠CFE,∴,∴,設CF=2,則CE=6,可設AT=x,則TF=3x,,∴,且,由,得,解得x=5,∴.【題目點撥】本題主要考查了三角形相似的判定及性質的綜合應用,熟練掌握三角形相似的判定及性質是解決本題的關鍵.24、證明見解析【解題分析】
根據(jù)平行四邊形性質推出AB=CD,AB∥CD,得出∠EBA=∠FDC,根據(jù)SAS證兩三角形全等即可解決問題.【題目詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,∴∠EBA=∠FDC,∵DE=BF,∴BE=DF,∵在△ABE和△CDF中,∴△ABE≌△CDF(SAS),∴AE=CF,∠E=∠F,∴AE∥CF.【題目點撥】本題考查了平行四邊形的性質和全等三角形的判定的應用,解題的關鍵是準確尋找全等三角形解決問題.25、(1)證明見解析;(2)1.【解題分析】試題分析:(1)取BD的中點0,連結OE,如圖,由∠BED=90°,根據(jù)圓周角定理可得BD為△BDE的外接圓的直徑,點O為△BDE的外接圓的圓心,再證明OE∥BC,得到∠AEO=∠C=90°,于是可根據(jù)切線的判定定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023試用期合同協(xié)議書七篇
- 2025交通事故自行調解書協(xié)議書12篇
- 個人股權轉讓協(xié)議書七篇
- 個人土地轉租協(xié)議范本
- 關注細節(jié)的“管理新星”-記工程局勞動模范經(jīng)管部部長孫獻龍
- 跖疣病因介紹
- 四大名著之紅樓春趣經(jīng)典解讀2
- 2023-2024學年天津市河北區(qū)高二(上)期末語文試卷
- 2023年天津市靜海一中高考語文模擬試卷(一)
- 重慶2020-2024年中考英語5年真題回-教師版-專題02 完形填空
- 期末測試卷(一)2024-2025學年 人教版PEP英語五年級上冊(含答案含聽力原文無聽力音頻)
- 2023-2024學年廣東省深圳市南山區(qū)八年級(上)期末英語試卷
- 2024廣西專業(yè)技術人員繼續(xù)教育公需科目參考答案(100分)
- 2024年上海市中考語文備考之150個文言實詞刷題表格及答案
- 2024年漢口銀行股份有限公司招聘筆試沖刺題(帶答案解析)
- 中醫(yī)跨文化傳播智慧樹知到期末考試答案章節(jié)答案2024年浙江中醫(yī)藥大學
- 2024年日歷表(空白)(一月一張-可編輯做工作日歷)
- 廣東省中山市2023-2024學年四年級上學期期末數(shù)學試卷
- 2022-2024年國際經(jīng)濟與貿易專業(yè)人才培養(yǎng)調研報告
- 剪刀式升降車專項施工方案
- 奇門遁甲入門教程(不收費)課件
評論
0/150
提交評論