焦煤爐中英文對(duì)照外文翻譯文獻(xiàn)_第1頁
焦煤爐中英文對(duì)照外文翻譯文獻(xiàn)_第2頁
焦煤爐中英文對(duì)照外文翻譯文獻(xiàn)_第3頁
焦煤爐中英文對(duì)照外文翻譯文獻(xiàn)_第4頁
焦煤爐中英文對(duì)照外文翻譯文獻(xiàn)_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

中英文對(duì)照外文翻譯文獻(xiàn)(文檔含英文原文和中文翻譯)原文:Energysavingandsomeenvironmentimprovementsincoke-ovenplantsAbstractTheenthalpyofinletcoalandfuelgasisdischargedfromacoke-ovenplantinthefollowingforms:chemicalandthermalenthalpyofincandescentcoke,chemicalandthermalenthalpyofcoke-ovengas,thermalenthalpyofcombustionexhaustgas,andwasteheatfromthebodyofthecokeoven.Inrecentyearstherecoveryofseveralkindsofwasteenergyfromcokeovenshasbeenpromotedmainlyforenergysavingpurposes,butalsofortheimprovementofenvironmentalconditions.Amongthevariousdevicesyetrealized,thesubstitutionoftheconventionalwetquenchingmethodwithacokedrycoolingisthemosttechnicallyandeconomicallyconvenient.Theaimofthispaperismainlyareviewofthemaintypesofcokedrycoolingplantsandadetailedexaminationoftheinfiuenceofsomeparameters,particularlyoftemperatureandpressureoftheproducedsteam,andontheenergyefficiencyoftheseplants.Introduction1.1.UsableenergyTheenergyofasystem-environmentcombinationisusuallydefinedastheamountofworkattainablewhenthesystemisbroughttoastateofunrestrictedequilibrium(thermal,mechanicalandchemical)bymeansofreversibleprocesses,involvingonlytheenvironmentatauniformlyconstanttemperatureandpressureandcomprisingsubstancesthatareinthermodynamicequilibrium.Notwithstandingthequitedifferentmeaning,chemicalenergiesdifferfromlowerheatingvaluesslightly,asisdiscussedin[1,2].Thechemicalenergygenerallyfallsbetweenthehigherandlowerheatingvaluesbutisclosertothehigher.Nomenclaturecpconstantpressureheatcapacity[kJ/(kgK)]Exenergy[kJ]Exuusableenergy[kJ]exspecificenergy[kJ/kg]Gvvolumeflowrate[m3(nTp)/h]Gv*specificvolumeflowrate[m3(nTp)/tdrycoke]ispecificenthalpy[kJ/kg]ppressure[bar]sspecificentropy[kJ/(kgK]Ttemperature[C,K]Toenvironmenttemperature[C,K]vspecificvolume[m3/kg]Фenergyeffciency[dimensionless]Nonetheless,thechemicalenergyisnotsuitableforquantifyingthetechnicalvalueofafuelfortworeasons:(i)Priortoconsideringheattransfer,itisnecessarytoaccountfortheessentiallyirreversiblecombustionprocess,whichdecreasestheexergiesofvariousfuelsgreatlyindifferentways.(ii)Theworkcorrespondingtoreversibleexpansionofseveralcomponents(inparticularCO2)downtotheiratmosphericpartialpressurescannotbeobtainedfromthecombustiongas,asisimplicitintheenergyde?nition.Inaddition,thisworkdifferswithfueltype.Consequently,Bisio[3]definedusableenergyastheexergeticvaluefollowinganadiabaticcombustionwithagivenexcessairratio(e.g.,1.1)minustheenergylossresultingfromirreversiblemixingofcom-bustiongaswiththeatmosphereafterhavingreachedatmosphericpressureandtemperature.Theratioofusableenergytolowerheatingvalueofagivenfuelistermedthemeritfactor.Thisfactorisalwayslessthanoneandincreasesasthetechnicalandeconomicvaluesofafuelrise.Theparameter“usableexergy”,ashasbeende?nedandappliedin[3],issuitableintheexamin-ationofplants,thatutilizefuelmixing,whentheaimistoreduceboththetotalfuelconsumptionand,chiefly,themorevaluablecomponentone.1.2.Coke-ovenenergyrecoveriesThechemicalenergyofafuelgas,whichisusedforacokeoven,amountsto2500-3200MJ/tdrycoal.Thisenergy,degradedtothermalenergyofvariousoperativevalues,isdischargedfromtheplantinsuchforms:Thermalenergyofincandescentcoke(43-48%)Thermalenthalpyofcoke-ovengas(24-30%)Thermalenergyofwastegas(10-18%)Permeability,convectionandradiationheatfromtheexternalsurfaceofcokeoven,andvariouslosses(10-17%)Theoilcrisisof1973createdastrongimpulsetowardsanewthinkingontheconsumptionandrationalutilizationofenergy,particularlyinthehighlyindustrializedcountrieswithlimitedindigenousenergyresources.Atthesametime,attentionthroughouttheworldwasalsoincreas-inglyfocusedonenvironmentproblems.Thepossibleutilizationofthethermalenergyofincandescentcokeisdealtwithinmanypapers.Usually,incokingtechnologythecokeiscooledbybeingsprayedwithwaterunderspecialquenchingtowers.Inrecentyears,thevarioustypesofdrycoolingplantsallowtherecov-eryofnearly80%ofthethermalenergyofincandescentcoke.Thepossibilitiesofutilizingreco-veredenergyareasfollows:Productionofsteamandelectricity.Preheatingofcokingcoal.Roomheating.Thethermalenergyofcoke-ovengas,whichisthesecondlargestintheabovelisting,hassofarbeenrarelyutilized.Variousstudies,however,havebeencarriedoutforthepossibleutilizationofthiswasteenergyandatechniquehasrecentlybeencommercializedinJapan.Thethermalenergyofcombustionexhaustgasisutilizedtopreheatboththecombustionairandfuelgasmixturethroughalarge-capacityregenerator.Consequentlythewastegastemperatureisreducedtoapproximately200C.Lately,thefurtherrecoveryofheatfromwastegashasbeenreportedinafewcasesusingaheatpipeinstalledintheˉue.Thevariouskindsofheatwastedfromthecoke-ovenexternalsurfacehavebeendecreasedbythereinforcedsealingandbetterthermalinsulationofcokeovens.Inthefollowingsections,themaintypesofcoke-ovenenergyrecoverieswillbeconsideredforacomparison.1.3.ProtectionoftheenvironmentAswiththeproblemofenergysavingandrecovery,thelastyearshavebeencharacterizedbyincreasedpreventionofatmosphericandwaterpollutionbyindustrialemissionsanddomesticwastes.Worktocontrolatmosphericpollutionhasbeencarriedoutinalldevelopedcountries.AccordingtoZaichenkoetal.,asaresultofincludingmeasuresforenvironmentalprotection,theinvestmentandthecokingcostsareincreasedby15%.However,ifthecalculationsincludedallowanceforlossescausedbyadverseeffectsofatmosphericpollutiononworkershealth,instal-lationofengineeringfacilitiesformaintainingcleanaircanbecost-effective.Inanycase,itisobviousthatanenvironmentalfacilityisparticularlytemptingwhen,aswithcokedrycoolingplants,inadditiontoenvironmentadvantages,anenergyrecoverycanbeassociated,eveniftheinvestmentcostsarehigherandnotjusti?edonlybyenergysaving.2.Cokedryquenching2.1.Methodsforenergyrecoveryandsavingfromcokeatthecoke-ovenoutletTheideaofrecoveringthermalenergyfromincandescentcokebymeansofaninertgasdatesbacktotheearly1900s.The?rstindustrialplants,designedparticularlybytheSulzerBrothers(Winterthur,Switzerland)werecarriedoutinthe'20sand'30sbothintheUSAandinEurope(Germany,France,UK,Switzerland)[4,18].However,thegreaterinvestmentcostsofdryquench-ingplants,incomparisonwiththoseofthewetquenchingones,wereamortizedwithdif?cultyinaperiodinwhichenergywasverycheap.Consequently,dryquenchingplantsweregivenup.Intheearly1960s,anewinterestarose:intheUSSR,drycoolingplants,whichbasicallyfollowedtheSulzerdesign,werebuiltwiththeprimaryaimofpreventingthecokefromfreezinginwinter,ashappenswithwetquenchedcoke.Theplant,constructedinvariouscountriesaccord-ingtotheSovietGiprokoksprocess[6],isschematicallyshowninFig.1.Thered-hotcoke,atatemperatureofabout1100C,ispushedfromovens,A,intocontainersplacedoncars.Loadedcarsaremovedtothedrycoolingplant,wherecontainers,B,areliftedbybridgecrane,C,andunloadedthroughthechargingsystem,D,intopre-chamber,E.Then,hotcokeistransferredintothecoolingchamber,F,insmallbatches.Afterleavingthecoolingchamberthroughthedischarg-ingsystem,G,cokeruns,atatemperatureofabout200C,ontoconveyorbelt,H.Cokeisrefriger-atedbyacirculatinggas,composedmainlybynitrogenandmovedbythemainblower,I.Thisgastransfersthermalenergyinboiler,N,whichproducessuperheatedsteam,O,atapressureupto100bar.Beforeenteringtheboiler,thegasisscrubbedinthecoarsede-duster,J,removingcoarseparticlesofcokedusttoprotecttheboilersurfacefromerosion.Afterleavingtheboiler,thegasstreamsthroughthe?nededuster,K,where?nedustisscrubbedout.In1983adrycoolingplant,schematicallyshowninFig.2,beganoperationinGermany.Itsmaincharacteristicisthat1/3ofthethermalenergyistransferreddirectlyfromthecoketothevaporizingwaterandtheremaining2/3throughtheinertgas.Theadvantagesarealowerquantityofcirculatinggaswithacorrespondinglylowerconsumptionofelectricalenergybytheblowerandagreaterenergyrecovery.Refrigeratingwallsinthecoolingchamberrepresentthecriticalpointoftheplanti.InGermany,acombinationofthecokedrycoolingandcoalpreheatingplanthasbeendeveloped[5,9,14±16].Thissystemrealizesprimaryenergysaving(e.g.gas)insteadofenergyrecoveryoflowerenergyvalue(steam)andthusitisthermodynamicallypreferred(see,e.g.,[29]).Inaddition,thewell-knownadvantagesofthesingleprocesseswithrespecttocokequalityandincreasedoutputhavebeencon?rmed.Thecompletelyclosedsystempermitssignificantenvironmentalimprovementsinthecokingplantsector,avoidingtheimmissionsofdustintotheatmosphereinapracticallycompleteway.Jung[13]consideredtheconvenienceofusingwatergas(H2+CO)astheheattransferfluid.Indeed,watergashasathermaldiffusivitythreetimesthatofnitrogen,andthusitallowsustoreducetheboilersurfaceby50%.Inananonymousnoteof“MetalProducing”[10],itwasstatedthatthemostconvenientusesoftheenergyrecoveredfromcokedryquenching(atleastintheUSA)arethefollowing:thedryingofcoalandtheheatingofmakeupwaterforboilersthatprovidesteaminthecokeplantperse.Indeed,theenergyisavailablewhenthecokeplantisrunning,whichisofcoursewhenitisrequired.Inaddition,thesequantitiesofenergymatchfairlywell.2.2.Researchontheoptimaltemperaturesandpressuresofsteam2.2.1.GeneralitiesaboutenergyandenergyanalysisInFig.3energyandenergyflowdiagramsarereportedforatypicalcokedrycoolingplantwithinletcoketemperature=1050°Candoutletcoketemperature=200°C.Bothdiagramsareuse-ful,however,onlyenergyflowissuitabletovisualizetheoperativevalueofthevariousenergies.FromFig.3oneremarksthatwithsuchdevicesitispossibletorecoverabout44%oftheenergyvalueoftheincandescentcokethermalenergy,correspondingtoaboutthe20%oftheenergyvalueoftheinletcoal.Owingtotherelativelylowvalueoftheenergyefficiencyofacokedryquenchingsystem,itseemsinterestingtoresearchtheoptimalvaluesofsomeparameters,andinparticularthecharac-teristicsofthesteamproduced(pressureandtemperature)inordertoobtainthemorecon-venientplant.Acomputeranalysishasbeenmade,assumingsomeinputdata,experimentallyobtainedfromarecentactualplant.Theinputdataarethetemperatureandpressurevaluesofthegasflowingthroughtheplant,themassflowratesofcokeattheinletandoutletofthecokecoolingchamber,andattheoutletofthecoarsededuster,themassflowrate,temperatureandpressureofsteam,theblowerisentropicefficiency,andtheefficiencyintheelectromechanicalconversionoftheelectroblower.Thefundamentaldataare:quenchedcokemassflowrate56t/hsteammassflowrate28t/hinletcoketemperature1050°Coutletcoketemperature200°Cspecificvolumeflowrateofgas1650m3(nTp)/tdrycoke.Byvaryingthetemperatureandpressureofsteamand/orthegasflowrate,onehasdeterminedthevariationofthesystemenergyefficiency,Ф,sodefined:where:Exst=steamexergy;Exwa=boilerfeedwater;Exc=energycorrespondingtotheelectricalworkoftheelectroblower;Exco=cokephysicalenergy(thus,excludingthechemicalcomponentofenergytobeutilizedinblastfurnace).2.2.2.SpecificenergydependenceupontemperatureandpressureLetusconsiderspecificenergyasafunctionoftemperature,Tandpressure,p.InthediagramofFig.4,thesteamspecificenergyforanopensystemisreportedasafunctionofpressureforvariousvaluesoftemperature.ItistoberemarkedthatspecificenergyincreasesalwaysasTincreasesatconstantp(fortemperaturesabovethatoftheenvironment),whereasnotalwaysexincreasesasprisesatconstantT.Thisresultseemspuzzlingandcontrarytotheconceptofexergy.Tojustifythetopicinavalidway,letconsiderthedefinitionofspecificenergyforanopensys-tem:andthenThevariationofspecificenthalpy,di,andofspecificentropy,ds,asafunctionofTandpcanbewrittenas[30]:andthenFromtheserelations,oneobtainsthatenergyincreasesastemperaturerises,whenT>To,andtheoppositeisverified,whenT<To,asiswellknown.Abouttheinfluenceofpressure,onecansaythatenergyincreasesaspressurerises,when(T-To.)and?1vtphaveoppositesign,and,sincewithveryfewexceptions?1vtp>0,when(T-To)>0.When(T-To)and?1vtphavethesamesign,onecannotexcludethepossibilitythatexergydecreaseswhenpressuregoesup.Thisindeedisverifiedinarangeinwhichtheattractiveforcesaregreatlyprevailingontherepulsiveforces[31].Fortheproblemthatishereconsidered,thishappensforsuperheatedsteamnotfarfromthecriticalpoint.ThisanalysisjustifiesthatsomeisothermalcurvesofFig.4haveamaximumforagivenpressure.Ontheotherhand,thisresultcouldbeyetpuzzling.Indeed,itiswellknownthattheoperativevalueincreasesalwayswithpressure.Tothispurpose,letuscomparethefollowingparameters:Fromtheserelations,intherangeinwhichforthesteam?2exTp<0itfollows:andthenitfollowsthat,ifenergydecreasesaspressuregoesdown,thedecreaseofenthalpyishigherandconsequently,eveniftheoperativeoftheunitmassofsteamgoesdown,theratioofthisoperativevaluetothe“cost”forobtainingit(i.e.thenecessaryheat)goesupandthisisinagreementwiththefactthatahigherpressureistechnicallyalwaysmorevaluable.2.2.3.Analysisresults“Recoveredexergy”hasbeendetermined;thenumeratorofrelation(1)givesthisparameter.Asanexample,inFigs.5and6therecoveredenergyisshownforonevalueofthespecificvolumeflowrateofgas,alternatively,withsteampressureinabscissae(andtemperatureasparameter)orwithsteamtemperatureinabscissae(andpressureasparameter).Oneremarksthattherecoveredenergygoesupalmostlinearlyasthesteamtemperatureincreases,andgoesupalwaysasthesteampressurerises(contrarytothesteamspecificentropy),butwithnegativesecondderivative.InFig.7therecoveredenergyisshownforonevalueofsteamtemperatureasafunctionofthespecificvolumeflowrateofgas(inabscissae)forvarioussteampressures(reportedasparameter).Tojustifythediagrams,itmustberemarkedthatasthespecificvolumeflowrateofgasincreases,theheatexchangedintheboilerbetweenthegasandthewater-steamincreaseswithnegativesecondderivative.Consequently,foreveryfixedcoupleofvaluesofTandp,theteamflowrateandthetotalsteamenergyexhibitthesamebehavior.Onthecontrary,owingtotheincreaseofthenecessarygascompressionwork,therecoveredenergyhasamaximumincorrespondencewithagivenspecificvolumeflowrateofgas.Thismaximum,foreverytemperaturevalue,tendstoahigherspecificvolumeflowrate,asthepressureincreases.Inparticular,atp=80bar,themaximumisneartothevalueGv*=1650m3(nTp)/tdrycoke.Thevariationsoftheenergyefficiency,owingtoitsdefinitionandtheconstancyofthephysicalenergyoftheincandescentcoke,aretotallysimilartothoseoftherecoveredexergy.Thus,onlytwodiagramsforenergyefficiencyincorrespondencetoaspecificvolumeflowrateofgasGv*=1650m3(nTp)/tdrycokearereported.InFigs.8and9,energyefficiencyvssteampressure(withsteamtemperatureasparameter)orvsthesteamtemperature(withsteampressureasparameter),respectively,isreported.Onthebasisofthevariousdiagrams(notallherereported),thespecificvolumeflowrateofgasGv*=1650m3(nTp)/tdrycokeseemstobethemoreconvenient.Theverylowincreaseoftherecoveredenergy(andthusoftheenergyefficiency),thatcanbenotedforsomevaluesofthecouple(T,p)ofthesteamincorrespondencetovaluesofthespecificvolumeflowrateofgasGv*slightlyhigherthan1650m3(nTp)/tdrycokedoesnotprobablycompensatethehigherplantandmaintenancecosts.Thetemperatureriseallowsaremarkableenergyefficiencyincrease.Thus,itseemsconvenienttochoosethemaximumtemperatureconsistentwiththeuseofmaterialswhicharenotparticularlyexpensive.ThelimitvalueofT=540°Ccanbepresentlychosen.Asthepressurerises,energyefficiencyincreasesremarkablytillapressureofabout80bar,andthentheincreaseisprogressivelyreduced.Forwhatisknowntoauthors,themaximumvaluetillnowappliedisof103barinasteelplantofJapan.Thus,itseemsthatthemoreconvenientpressurevalueisabout100bar.焦?fàn)t設(shè)備的能源節(jié)約和環(huán)境改善摘要在下面幾種形式中焦?fàn)t設(shè)備的進(jìn)口煤和燃?xì)獾臒崃渴遣豢煽刂频模簾霟峤沟幕瘜W(xué)和熱焓,焦?fàn)t煤氣的化學(xué)和熱焓,燃燒排放氣的熱焓,還有從焦煤爐體中浪費(fèi)的大量熱量。在近些年從焦煤爐體中重復(fù)利用的一些浪費(fèi)的能源,達(dá)到了主要能源節(jié)約的目的,同時(shí)也為環(huán)境改善提供了一定的條件。多種設(shè)備也已實(shí)現(xiàn)利用,用焦煤的干燥冷卻來替代傳統(tǒng)的淬火方式,這是最科學(xué)最經(jīng)濟(jì)方便的。這篇論文的目的是主要討論焦?fàn)t干燥裝置的主要型號(hào)和一些參數(shù)對(duì)能源節(jié)約的影響做出的一些詳細(xì)討論,特別是生產(chǎn)蒸汽的溫度和壓力,還有這些設(shè)備的能源效率。簡(jiǎn)介1.1可用能源一個(gè)系統(tǒng)環(huán)境組合的能源,當(dāng)這個(gè)系統(tǒng)通過可逆程序帶來一種不受限的平衡的情形(熱能,機(jī)械能和化學(xué)能)時(shí),通常被定義為可做功,僅僅受限于環(huán)境在一致常溫、常壓和在熱力學(xué)平衡中的物質(zhì)構(gòu)成。盡管意義十分不同,化學(xué)能不同于輕微的低價(jià)熱能,這在[1,2]中會(huì)被討論。這個(gè)化學(xué)能一般在高價(jià)和低價(jià)的熱量中間,但是更靠近高價(jià)熱能一些。專業(yè)術(shù)語cp常壓下的熱能[kJ/(kgK)]Ex內(nèi)能[kJ]Exu可利用能量[kJ]ex特定內(nèi)能[kJ/kg]Gv流動(dòng)速度[m3(nTp)/h]Gv*特定流動(dòng)速度[m3(nTp)/tdrycoke]i特定焓[kJ/kg]p壓力[bar]s特定熵[kJ/(kgK]T溫度[C,K]To環(huán)境溫度[C,K]v特定體積[m3/kg]Ф能源率[dimensionless]雖然如此,化學(xué)能不適合用來量化燃料的技術(shù)價(jià)值的兩個(gè)原因:(i)先要考慮到熱量轉(zhuǎn)化,說明不可逆燃燒過程是必要的,在很大程度上減少了不同方式中各種燃料的能量。(ii)這個(gè)相應(yīng)不可逆膨脹過程的一些成分(特別是二氧化碳)減少了大氣層的部分壓力,其是不能從燃?xì)庵蝎@得,因?yàn)槠潆[藏在能量定義中。另外,這個(gè)過程燃料型號(hào)不同。因此,Bisio[3]定義為可利用能量,因?yàn)槟芰績(jī)r(jià)值隨著絕熱燃料用過量空氣率(e.g.,1.1)減去混合燃料不可逆中的能量損失,然后大氣達(dá)到大氣壓力和溫度。可利用能率的給料低價(jià)熱能是被認(rèn)為優(yōu)勢(shì)因素。這個(gè)因素總是少于某個(gè),并且隨著燃料的增加,科技和經(jīng)濟(jì)價(jià)值也增加?!翱衫媚堋边@個(gè)參數(shù),被定義和應(yīng)用在[3],適合電站的檢查,利用燃料混合的目的是減少總?cè)剂系南?,主要的這個(gè)參數(shù)是更重要的組成之一。1.2焦煤爐的能源利用被用于焦煤爐的燃料化學(xué)能,總和為2500-3200MJ/tdrycoal。這個(gè)能量被分解為多種有效熱能,從設(shè)備中以多種形式排放出去:熾熱焦的熱能(43-48%)焦煤燃?xì)獾臒犰剩?4-30%)廢氣的熱能(10-18%)導(dǎo)磁系數(shù),焦煤爐的外部表面的對(duì)流傳熱和輻射傳熱,還有多種損失(10-17%)1973年的石油危機(jī)創(chuàng)造了一個(gè)朝著消費(fèi)新想法和能源利用合理性的強(qiáng)大動(dòng)力,特別是在高工業(yè)化程度的城市被限制在本土的能源。同時(shí),世界也通過其注意力增加了對(duì)環(huán)境問題的重視。熾熱焦的可利用熱能在許多論文中處理過。通常,在焦炭技術(shù)中,焦炭被通過在淬火塔中散布水的方式來冷卻。在近幾年,多種型號(hào)的干燥冷卻電站允許恢復(fù)熾熱焦的熱能的將近80%。最可能循環(huán)利用的能量如下:蒸汽和電能的生產(chǎn)焦炭煤的預(yù)熱空間熱焦煤氣體的熱能是上面清單上的第二大能量,目前很少被利用。然而,多種研究關(guān)于可利用廢能被實(shí)施,并且其技術(shù)最近在日本商業(yè)化。燃燒排出的氣體的熱能是通過一個(gè)大容量的蓄熱器被利用來預(yù)熱空氣和燃料氣體混合物的。因此廢氣的溫度是減少的,大約200°C。近來,從廢氣中進(jìn)一步重復(fù)利用熱量,據(jù)報(bào)道是把熱力管安裝在煙道里。多種熱能是從焦煤爐體外表面浪費(fèi)的,通過對(duì)焦煤爐體的加密和更好的熱孤立系統(tǒng)可以減少。在下面的文章中,焦煤爐的主要型號(hào)的能源重復(fù)利用將會(huì)通過考慮對(duì)比。1.3環(huán)境保護(hù)隨著能源節(jié)約和重復(fù)利用的難題,最近這些年的特點(diǎn)是通過增加對(duì)大氣和被工業(yè)排放和家庭廢物的水污染預(yù)防。在所有的發(fā)展中國(guó)家中控制大氣污染的工作被實(shí)施。根據(jù)Zaichenkoetal,作為一個(gè)環(huán)境保護(hù)措施的結(jié)果,投資和焦炭的花費(fèi)增加到了15%。然而,如果把工人們通過大氣污染的不利影響引起的損失也計(jì)算在內(nèi)的話,裝置之所以高效能是其設(shè)計(jì)因素是維持純凈的空氣。在任何情形下,顯而易見一個(gè)環(huán)境設(shè)備是特別吸引人的,除了環(huán)境優(yōu)勢(shì),焦煤冷卻設(shè)備和能源的重復(fù)利用是關(guān)聯(lián)的,甚至投資花費(fèi)更高,并且不是僅僅通過能源節(jié)約調(diào)整的。焦炭干淬火2.1能源重復(fù)利用的方法和節(jié)約從焦?fàn)t輸出的焦煤熾熱焦炭通過惰性氣體再生熱能的方法可以追溯到20世紀(jì)初。第一個(gè)特殊設(shè)計(jì)的工廠,在20世紀(jì)20年代至30年代在美國(guó)和歐洲被SulzerBrothers(Winterthur,Switzerland)實(shí)施。然而,干淬火比是淬火投資花費(fèi)更大,在能源非常便宜的時(shí)期分期付款是困難的。結(jié)果,放棄了干淬火。在20世紀(jì)60年代,一則新聞引起了關(guān)注,在USSR,干燥冷卻設(shè)備基本是跟隨Sulzer的設(shè)計(jì),最初被建設(shè)的目的是防止焦炭在冬天凍結(jié),就像是濕淬火。根據(jù)SovietGiprokoks的設(shè)計(jì),這個(gè)設(shè)備在各個(gè)國(guó)家被建設(shè),如下圖1。溫度大約1100°C的紅色焦炭從爐體被推出來,A是流量集裝箱。裝載流量集裝箱被運(yùn)往干燥冷卻站。B通過吊車提升。C通過爐料系統(tǒng)被卸載,D進(jìn)入煉油爐膛。E然后,熱的焦炭被轉(zhuǎn)運(yùn)到冷卻爐。F在小爐里,離開冷卻爐掌控系統(tǒng)。G焦炭流量,溫度大概200°C,在輸送帶上。H焦炭通過主要由氮?dú)饨M成的循環(huán)氣體被凍結(jié)并且通過主鼓風(fēng)機(jī)移動(dòng)。I在鍋爐里這個(gè)氣體轉(zhuǎn)換成熱能。N產(chǎn)生過熱蒸汽。O壓力升到100bar.在進(jìn)入鍋爐前,在粗除塵器中氣體被刷洗。J去除粗糙的焦炭灰塵顆粒來保護(hù)鍋爐表面受侵蝕。離開鍋爐后,氣體蒸氣通過細(xì)除塵器。K在優(yōu)良的除塵器里被刷洗出來。圖1Giprokoks的焦炭干燥冷卻方法:A引入焦炭;B焦炭集裝箱;C吊車;D裝料系統(tǒng);E煉油爐膛;F焦炭冷卻室;G卸料系統(tǒng);H焦炭輸送帶;I主鼓風(fēng)機(jī);J粗除塵器;K細(xì)除塵器;L備用的鼓風(fēng)機(jī);M給水泵;N蒸發(fā)器;O蒸汽排出口1983年的一個(gè)干燥冷卻電站開始在德國(guó)被操作,如圖2所示。它的主要特征是熱能的1/3被直接從焦炭轉(zhuǎn)換成蒸餾水,還有2/3仍然通過惰性氣體保留。優(yōu)勢(shì)是少量的循環(huán)氣體相應(yīng)地有少量的鼓風(fēng)機(jī)電能消耗,并且有較大量的能源重獲。冷凍墻在冷卻室里呈現(xiàn)該廠鑒定的結(jié)果。在德國(guó),發(fā)展了一種焦炭干燥冷卻和煤的再熱相結(jié)合的設(shè)備。這個(gè)系統(tǒng)主要能源節(jié)約代替了低價(jià)能源重復(fù)利用,并且它是熱力學(xué)首選的。另外,焦炭的質(zhì)量方面和增加輸出量是眾所周知的優(yōu)點(diǎn),也被認(rèn)證了。在焦炭電廠里這個(gè)完整的閉合系統(tǒng)認(rèn)可對(duì)環(huán)境改善有重大意義,用一種實(shí)際完整的方法避免灰塵進(jìn)入大氣。Jung[13]認(rèn)為使用水氣體(H2+CO)作為便利的熱轉(zhuǎn)換流體。甚至,水氣能比散布比氮?dú)舛?倍的熱量,并且允許我們減少至少50%的鍋爐表面?!癕etalProducing”[10]是一個(gè)匿名筆記,它在下面強(qiáng)調(diào)了最便捷的從焦炭干淬火中能源的重獲的使用方法(至少在美國(guó)):煤的干燥和加熱的補(bǔ)充水在焦煤電站中為鍋爐提供蒸汽。甚至,當(dāng)焦煤設(shè)備運(yùn)行時(shí)能源是可利用的,當(dāng)然是在它必須的時(shí)候。另外,這些能源的質(zhì)量相當(dāng)?shù)睾谩?.2最佳蒸汽溫度和壓力的研究2.2.1概述內(nèi)能和內(nèi)能的分析如圖3內(nèi)能和內(nèi)能流動(dòng)圖解報(bào)告了一個(gè)典型的焦煤干燥冷卻站,進(jìn)口焦炭的溫度=1050°C,出口焦炭的溫度=200°C。圖解是有用的,然而,僅僅能源流動(dòng)顯現(xiàn)了多種能源的有效價(jià)值。圖3焓(1)和內(nèi)能(2)的流動(dòng)圖表:A入口焦炭熱焓(90.52%);B鼓風(fēng)機(jī)焓值(2.15%);C焦炭和殘?jiān)ㄟ^蒸餾氣體燃燒焓值(5.03%);D入口水焓值(2.3%);E蒸汽焓值(84%);F廢氣焓值(0.8%);G表面損失焓值(4%);H出口焦炭熱焓(11.2%);A’入口焦炭?jī)?nèi)能(89.59%);B’鼓風(fēng)機(jī)內(nèi)能(3.68%);C’焦炭和殘?jiān)ㄟ^蒸餾氣體燃燒內(nèi)能(6.73%);E’蒸汽內(nèi)能(44.5%);I’內(nèi)能損失(55.5%)從圖3附注有這樣一個(gè)裝置它可能從熾熱的焦炭熱能中恢復(fù)大約44%的有效內(nèi)能,相當(dāng)有大約20%的入口焦炭的有效內(nèi)能。由于焦炭干淬火的相對(duì)的低效能,引起了對(duì)一切參

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論