2024屆湖南省湘南聯(lián)盟高三上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁(yè)
2024屆湖南省湘南聯(lián)盟高三上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁(yè)
2024屆湖南省湘南聯(lián)盟高三上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁(yè)
2024屆湖南省湘南聯(lián)盟高三上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁(yè)
2024屆湖南省湘南聯(lián)盟高三上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆湖南省湘南聯(lián)盟高三上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,,,若,則()A. B. C. D.2.過(guò)雙曲線(xiàn)的左焦點(diǎn)作直線(xiàn)交雙曲線(xiàn)的兩天漸近線(xiàn)于,兩點(diǎn),若為線(xiàn)段的中點(diǎn),且(為坐標(biāo)原點(diǎn)),則雙曲線(xiàn)的離心率為()A. B. C. D.3.著名的斐波那契數(shù)列:1,1,2,3,5,8,…,滿(mǎn)足,,,若,則()A.2020 B.4038 C.4039 D.40404.在棱長(zhǎng)為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點(diǎn),若三棱錐P?ABC的四個(gè)頂點(diǎn)都在球O的球面上,則球O的表面積為()A.12 B. C. D.105.在等差數(shù)列中,若為前項(xiàng)和,,則的值是()A.156 B.124 C.136 D.1806.設(shè),隨機(jī)變量的分布列是01則當(dāng)在內(nèi)增大時(shí),()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大7.五行學(xué)說(shuō)是華夏民族創(chuàng)造的哲學(xué)思想,是華夏文明重要組成部分.古人認(rèn)為,天下萬(wàn)物皆由金、木、水、火、土五類(lèi)元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關(guān)系.若從5類(lèi)元素中任選2類(lèi)元素,則2類(lèi)元素相生的概率為()A. B. C. D.8.設(shè),是雙曲線(xiàn)的左,右焦點(diǎn),是坐標(biāo)原點(diǎn),過(guò)點(diǎn)作的一條漸近線(xiàn)的垂線(xiàn),垂足為.若,則的離心率為()A. B. C. D.9.已知將函數(shù)(,)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,若和的圖象都關(guān)于對(duì)稱(chēng),則下述四個(gè)結(jié)論:①②③④點(diǎn)為函數(shù)的一個(gè)對(duì)稱(chēng)中心其中所有正確結(jié)論的編號(hào)是()A.①②③ B.①③④ C.①②④ D.②③④10.已知,且,則在方向上的投影為()A. B. C. D.11.函數(shù)f(x)=lnA. B. C. D.12.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若存在實(shí)數(shù)使得不等式在某區(qū)間上恒成立,則稱(chēng)與為該區(qū)間上的一對(duì)“分離函數(shù)”,下列各組函數(shù)中是對(duì)應(yīng)區(qū)間上的“分離函數(shù)”的有___________.(填上所有正確答案的序號(hào))①,,;②,,;③,,;④,,.14.在正奇數(shù)非減數(shù)列中,每個(gè)正奇數(shù)出現(xiàn)次.已知存在整數(shù)、、,對(duì)所有的整數(shù)滿(mǎn)足,其中表示不超過(guò)的最大整數(shù).則等于______.15.已知向量,,若,則實(shí)數(shù)______.16.已知圓,直線(xiàn)與圓交于兩點(diǎn),,若,則弦的長(zhǎng)度的最大值為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的值;(2)定義:若直線(xiàn)與曲線(xiàn)都相切,我們稱(chēng)直線(xiàn)為曲線(xiàn)、的公切線(xiàn),證明:曲線(xiàn)與總存在公切線(xiàn).18.(12分)已知函數(shù)(1)若,試討論的單調(diào)性;(2)若,實(shí)數(shù)為方程的兩不等實(shí)根,求證:.19.(12分)在直角坐標(biāo)系中,已知點(diǎn),若以線(xiàn)段為直徑的圓與軸相切.(1)求點(diǎn)的軌跡的方程;(2)若上存在兩動(dòng)點(diǎn)(A,B在軸異側(cè))滿(mǎn)足,且的周長(zhǎng)為,求的值.20.(12分)(1)求曲線(xiàn)和曲線(xiàn)圍成圖形的面積;(2)化簡(jiǎn)求值:.21.(12分)在邊長(zhǎng)為的正方形,分別為的中點(diǎn),分別為的中點(diǎn),現(xiàn)沿折疊,使三點(diǎn)重合,構(gòu)成一個(gè)三棱錐.(1)判別與平面的位置關(guān)系,并給出證明;(2)求多面體的體積.22.(10分)某工廠(chǎng)的機(jī)器上有一種易損元件A,這種元件在使用過(guò)程中發(fā)生損壞時(shí),需要送維修處維修.工廠(chǎng)規(guī)定當(dāng)日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當(dāng)日必須完成所有損壞元件A的維修工作.每個(gè)工人獨(dú)立維修A元件需要時(shí)間相同.維修處記錄了某月從1日到20日每天維修元件A的個(gè)數(shù),具體數(shù)據(jù)如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個(gè)數(shù)91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個(gè)數(shù)12241515151215151524從這20天中隨機(jī)選取一天,隨機(jī)變量X表示在維修處該天元件A的維修個(gè)數(shù).(Ⅰ)求X的分布列與數(shù)學(xué)期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個(gè)維修工人每天維修元件A的個(gè)數(shù)的數(shù)學(xué)期望不超過(guò)4個(gè),至少需要增加幾名維修工人?(只需寫(xiě)出結(jié)論)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

由平行求出參數(shù),再由數(shù)量積的坐標(biāo)運(yùn)算計(jì)算.【詳解】由,得,則,,,所以.故選:B.【點(diǎn)睛】本題考查向量平行的坐標(biāo)表示,考查數(shù)量積的坐標(biāo)運(yùn)算,掌握向量數(shù)量積的坐標(biāo)運(yùn)算是解題關(guān)鍵.2、C【解析】由題意可得雙曲線(xiàn)的漸近線(xiàn)的方程為.∵為線(xiàn)段的中點(diǎn),∴,則為等腰三角形.∴由雙曲線(xiàn)的的漸近線(xiàn)的性質(zhì)可得∴∴,即.∴雙曲線(xiàn)的離心率為故選C.點(diǎn)睛:本題考查了橢圓和雙曲線(xiàn)的定義和性質(zhì),考查了離心率的求解,同時(shí)涉及到橢圓的定義和雙曲線(xiàn)的定義及三角形的三邊的關(guān)系應(yīng)用,對(duì)于求解曲線(xiàn)的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).3、D【解析】

計(jì)算,代入等式,根據(jù)化簡(jiǎn)得到答案.【詳解】,,,故,,故.故選:.【點(diǎn)睛】本題考查了斐波那契數(shù)列,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.4、C【解析】

取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【詳解】如圖,取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個(gè)頂點(diǎn)都在球O的球面上,的外接圓直徑為,球O的半徑R滿(mǎn)足,所以球O的表面積S=4πR2=,故選:C.【點(diǎn)睛】此題考查三棱錐的外接球半徑與棱長(zhǎng)的關(guān)系,及球的表面積公式,解題時(shí)要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.5、A【解析】

因?yàn)?,可得,根?jù)等差數(shù)列前項(xiàng)和,即可求得答案.【詳解】,,.故選:A.【點(diǎn)睛】本題主要考查了求等差數(shù)列前項(xiàng)和,解題關(guān)鍵是掌握等差中項(xiàng)定義和等差數(shù)列前項(xiàng)和公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.6、C【解析】

,,判斷其在內(nèi)的單調(diào)性即可.【詳解】解:根據(jù)題意在內(nèi)遞增,,是以為對(duì)稱(chēng)軸,開(kāi)口向下的拋物線(xiàn),所以在上單調(diào)遞減,故選:C.【點(diǎn)睛】本題考查了利用隨機(jī)變量的分布列求隨機(jī)變量的期望與方差,屬于中檔題.7、A【解析】

列舉出金、木、水、火、土任取兩個(gè)的所有結(jié)果共10種,其中2類(lèi)元素相生的結(jié)果有5種,再根據(jù)古典概型概率公式可得結(jié)果.【詳解】金、木、水、火、土任取兩類(lèi),共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結(jié)果,其中兩類(lèi)元素相生的有火木、火土、木水、水金、金土共5結(jié)果,所以2類(lèi)元素相生的概率為,故選A.【點(diǎn)睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時(shí),找準(zhǔn)基本事件個(gè)數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個(gè)數(shù)較少且易一一列舉出的;(2)樹(shù)狀圖法:適合于較為復(fù)雜的問(wèn)題中的基本亊件的探求.在找基本事件個(gè)數(shù)時(shí),一定要按順序逐個(gè)寫(xiě)出:先,….,再,…..依次….…這樣才能避免多寫(xiě)、漏寫(xiě)現(xiàn)象的發(fā)生.8、B【解析】

設(shè)過(guò)點(diǎn)作的垂線(xiàn),其方程為,聯(lián)立方程,求得,,即,由,列出相應(yīng)方程,求出離心率.【詳解】解:不妨設(shè)過(guò)點(diǎn)作的垂線(xiàn),其方程為,由解得,,即,由,所以有,化簡(jiǎn)得,所以離心率.故選:B.【點(diǎn)睛】本題主要考查雙曲線(xiàn)的概念、直線(xiàn)與直線(xiàn)的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解、推理論證能力,屬于中檔題.9、B【解析】

首先根據(jù)三角函數(shù)的平移規(guī)則表示出,再根據(jù)對(duì)稱(chēng)性求出、,即可求出的解析式,從而驗(yàn)證可得;【詳解】解:由題意可得,又∵和的圖象都關(guān)于對(duì)稱(chēng),∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯(cuò)誤.故選:B【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì)的應(yīng)用,三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.10、C【解析】

由向量垂直的向量表示求出,再由投影的定義計(jì)算.【詳解】由可得,因?yàn)?,所以.故在方向上的投影為.故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.11、C【解析】因?yàn)閒x=lnx2-4x+4x-23=12、D【解析】

根據(jù)三視圖判斷出幾何體為正四棱錐,由此計(jì)算出幾何體的表面積.【詳解】根據(jù)三視圖可知,該幾何體為正四棱錐.底面積為.側(cè)面的高為,所以側(cè)面積為.所以該幾何體的表面積是.故選:D【點(diǎn)睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計(jì)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、①②④【解析】

由題意可知,若要存在使得成立,我們可考慮兩函數(shù)是否存在公切點(diǎn),若兩函數(shù)在公切點(diǎn)對(duì)應(yīng)的位置一個(gè)單增,另一個(gè)單減,則很容易判斷,對(duì)①,③,④都可以采用此法判斷,對(duì)②分析式子特點(diǎn)可知,,進(jìn)而判斷【詳解】①時(shí),令,則,單調(diào)遞增,,即.令,則,單調(diào)遞減,,即,因此,滿(mǎn)足題意.②時(shí),易知,滿(mǎn)足題意.③注意到,因此如果存在直線(xiàn),只有可能是(或)在處的切線(xiàn),,因此切線(xiàn)為,易知,,因此不存在直線(xiàn)滿(mǎn)足題意.④時(shí),注意到,因此如果存在直線(xiàn),只有可能是(或)在處的切線(xiàn),,因此切線(xiàn)為.令,則,易知在上單調(diào)遞增,在上單調(diào)遞減,所以,即.令,則,易知在上單調(diào)遞減,在上單調(diào)遞增,所以,即.因此,滿(mǎn)足題意.故答案為:①②④【點(diǎn)睛】本題考查新定義題型、利用導(dǎo)數(shù)研究函數(shù)圖像,轉(zhuǎn)化與化歸思想,屬于中檔題14、2【解析】

將已知數(shù)列分組為(1),,共個(gè)組.設(shè)在第組,,則有,即.注意到,解得.所以,.因此,.故.15、-2【解析】

根據(jù)向量坐標(biāo)運(yùn)算可求得,根據(jù)平行關(guān)系可構(gòu)造方程求得結(jié)果.【詳解】由題意得:,解得:本題正確結(jié)果:【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算,關(guān)鍵是能夠利用平行關(guān)系構(gòu)造出方程.16、【解析】

取的中點(diǎn)為M,由可得,可得M在上,當(dāng)最小時(shí),弦的長(zhǎng)才最大.【詳解】設(shè)為的中點(diǎn),,即,即,,.設(shè),則,得.所以,.故答案為:【點(diǎn)睛】本題考查直線(xiàn)與圓的位置關(guān)系的綜合應(yīng)用,考查學(xué)生的邏輯推理、數(shù)形結(jié)合的思想,是一道有一定難度的題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)見(jiàn)解析.【解析】

(1)求出導(dǎo)數(shù),問(wèn)題轉(zhuǎn)化為在上恒成立,利用導(dǎo)數(shù)求出的最小值即可求解;(2)分別設(shè)切點(diǎn)橫坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義寫(xiě)出切線(xiàn)方程,問(wèn)題轉(zhuǎn)化為證明兩直線(xiàn)重合,只需滿(mǎn)足有解即可,利用函數(shù)的導(dǎo)數(shù)及零點(diǎn)存在性定理即可證明存在.【詳解】(1),函數(shù)在上單調(diào)遞增等價(jià)于在上恒成立.令,得,所以在單調(diào)遞減,在單調(diào)遞增,則.因?yàn)?,則在上恒成立等價(jià)于在上恒成立;又,所以,即.(2)設(shè)的切點(diǎn)橫坐標(biāo)為,則切線(xiàn)方程為……①設(shè)的切點(diǎn)橫坐標(biāo)為,則,切線(xiàn)方程為……②若存在,使①②成為同一條直線(xiàn),則曲線(xiàn)與存在公切線(xiàn),由①②得消去得即令,則所以,函數(shù)在區(qū)間上單調(diào)遞增,,使得時(shí)總有又時(shí),在上總有解綜上,函數(shù)與總存在公切線(xiàn).【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的恒成立問(wèn)題,導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)證明方程有解,屬于難題.18、(1)答案不唯一,具體見(jiàn)解析(2)證明見(jiàn)解析【解析】

(1)根據(jù)題意得,分與討論即可得到函數(shù)的單調(diào)性;(2)根據(jù)題意構(gòu)造函數(shù),得,參變分離得,分析不等式,即轉(zhuǎn)化為,設(shè),再構(gòu)造函數(shù),利用導(dǎo)數(shù)得單調(diào)性,進(jìn)而得證.【詳解】(1)依題意,當(dāng)時(shí),,①當(dāng)時(shí),恒成立,此時(shí)在定義域上單調(diào)遞增;②當(dāng)時(shí),若,;若,;故此時(shí)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2)方法1:由得令,則,依題意有,即,要證,只需證(不妨設(shè)),即證,令,設(shè),則,在單調(diào)遞減,即,從而有.方法2:由得令,則,當(dāng)時(shí),時(shí),故在上單調(diào)遞增,在上單調(diào)遞減,不妨設(shè),則,要證,只需證,易知,故只需證,即證令,(),則==,(也可代入后再求導(dǎo))在上單調(diào)遞減,,故對(duì)于時(shí),總有.由此得【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類(lèi)討論思想,轉(zhuǎn)化思想,屬于難題.19、(1);(2)【解析】

(1)設(shè),則由題設(shè)條件可得,化簡(jiǎn)后可得軌跡的方程.(2)設(shè)直線(xiàn),聯(lián)立直線(xiàn)方程和拋物線(xiàn)方程后利用韋達(dá)定理化簡(jiǎn)并求得,結(jié)合焦半徑公式及弦長(zhǎng)公式可求的值及的長(zhǎng).【詳解】(1)設(shè),則圓心的坐標(biāo)為,因?yàn)橐跃€(xiàn)段為直徑的圓與軸相切,所以,化簡(jiǎn)得的方程為.(2)由題意,設(shè)直線(xiàn),聯(lián)立得,設(shè)(其中)所以,,且,因?yàn)?,所以,,所以,故或(舍),直線(xiàn),因?yàn)榈闹荛L(zhǎng)為所以.即,因?yàn)?又,所以,解得,所以.【點(diǎn)睛】本題考查曲線(xiàn)方程以及拋物線(xiàn)中的弦長(zhǎng)計(jì)算,還涉及到向量的數(shù)量積.一般地,拋物線(xiàn)中的弦長(zhǎng)問(wèn)題,一般可通過(guò)聯(lián)立方程組并消元得到關(guān)于或的一元二次方程,再把已知等式化為關(guān)于兩個(gè)的交點(diǎn)橫坐標(biāo)或縱坐標(biāo)的關(guān)系式,該關(guān)系中含有或,最后利用韋達(dá)定理把關(guān)系式轉(zhuǎn)化為某一個(gè)變量的方程.本題屬于中檔題.20、(1)(2)【解析】

(1)求曲線(xiàn)和曲線(xiàn)圍成的圖形面積,首先求出兩曲線(xiàn)交點(diǎn)的橫坐標(biāo)0、1,然后求在區(qū)間

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論