2024屆北京市海淀區(qū)十一學(xué)校第二學(xué)期高三摸底考試數(shù)學(xué)試題試卷_第1頁
2024屆北京市海淀區(qū)十一學(xué)校第二學(xué)期高三摸底考試數(shù)學(xué)試題試卷_第2頁
2024屆北京市海淀區(qū)十一學(xué)校第二學(xué)期高三摸底考試數(shù)學(xué)試題試卷_第3頁
2024屆北京市海淀區(qū)十一學(xué)校第二學(xué)期高三摸底考試數(shù)學(xué)試題試卷_第4頁
2024屆北京市海淀區(qū)十一學(xué)校第二學(xué)期高三摸底考試數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆北京市海淀區(qū)十一學(xué)校第二學(xué)期高三摸底考試數(shù)學(xué)試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列的首項,且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有2.在正方體中,點,,分別為棱,,的中點,給出下列命題:①;②;③平面;④和成角為.正確命題的個數(shù)是()A.0 B.1 C.2 D.33.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.4.函數(shù)的值域為()A. B. C. D.5.在中,是的中點,,點在上且滿足,則等于()A. B. C. D.6.斜率為1的直線l與橢圓相交于A、B兩點,則的最大值為A.2 B. C. D.7.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B.4 C. D.8.陀螺是中國民間最早的娛樂工具,也稱陀羅.如圖,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某個陀螺的三視圖,則該陀螺的表面積為()A. B.C. D.9.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數(shù)組成的—個階方陣,其各行各列及兩條對角線所含的個數(shù)之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.4510.如圖是一個幾何體的三視圖,則這個幾何體的體積為()A. B. C. D.11.某個小區(qū)住戶共200戶,為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進(jìn)行調(diào)查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.14012.若函數(shù)的圖象過點,則它的一條對稱軸方程可能是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,,若,則數(shù)列的前n項和______.14.設(shè),滿足約束條件,若的最大值是10,則________.15.在正方體中,分別為棱的中點,則直線與直線所成角的正切值為_________.16.已知數(shù)列滿足,且,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在△ABC中,角A,B,C的對邊分別是a,b,c,.(1)求cosC;(2)若b=7,D是BC邊上的點,且△ACD的面積為,求sin∠ADB.18.(12分)如圖,四棱錐中,平面平面,若,四邊形是平行四邊形,且.(Ⅰ)求證:;(Ⅱ)若點在線段上,且平面,,,求二面角的余弦值.19.(12分)已知等腰梯形中(如圖1),,,為線段的中點,、為線段上的點,,現(xiàn)將四邊形沿折起(如圖2)(1)求證:平面;(2)在圖2中,若,求直線與平面所成角的正弦值.20.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.(Ⅰ)求直線的普通方程及曲線的直角坐標(biāo)方程;(Ⅱ)設(shè)點,直線與曲線相交于,,求的值.21.(12分)如圖,在三棱柱中,、、分別是、、的中點.(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.22.(10分)改革開放年,我國經(jīng)濟(jì)取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強(qiáng).為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進(jìn)行一次全市駕駛員交通安全意識調(diào)查.隨機(jī)抽取男女駕駛員各人,進(jìn)行問卷測評,所得分?jǐn)?shù)的頻率分布直方圖如圖所示在分以上為交通安全意識強(qiáng).求的值,并估計該城市駕駛員交通安全意識強(qiáng)的概率;已知交通安全意識強(qiáng)的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認(rèn)為交通安全意識與性別有關(guān);安全意識強(qiáng)安全意識不強(qiáng)合計男性女性合計用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機(jī)選取人對未來一年內(nèi)的交通違章情況進(jìn)行跟蹤調(diào)查,求至少有人得分低于分的概率.附:其中

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】

根據(jù)等差數(shù)列和等比數(shù)列的定義進(jìn)行判斷即可.【題目詳解】A:當(dāng)時,,顯然符合是等差數(shù)列,但是此時不成立,故本說法不正確;B:當(dāng)時,,顯然符合是等比數(shù)列,但是此時不成立,故本說法不正確;C:當(dāng)時,因此有常數(shù),因此是等差數(shù)列,因此當(dāng)不是等差數(shù)列時,一定有,故本說法正確;D:當(dāng)時,若時,顯然數(shù)列是等比數(shù)列,故本說法不正確.故選:C【題目點撥】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.2、C【解題分析】

建立空間直角坐標(biāo)系,利用向量的方法對四個命題逐一分析,由此得出正確命題的個數(shù).【題目詳解】設(shè)正方體邊長為,建立空間直角坐標(biāo)系如下圖所示,,.①,,所以,故①正確.②,,不存在實數(shù)使,故不成立,故②錯誤.③,,,故平面不成立,故③錯誤.④,,設(shè)和成角為,則,由于,所以,故④正確.綜上所述,正確的命題有個.故選:C【題目點撥】本小題主要考查空間線線、線面位置關(guān)系的向量判斷方法,考查運算求解能力,屬于中檔題.3、D【解題分析】

根據(jù)三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構(gòu)成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【題目詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構(gòu)成,該多面體體積為.故選D.【題目點撥】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎(chǔ)題.4、A【解題分析】

由計算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的值域.【題目詳解】,,,因此,函數(shù)的值域為.故選:A.【題目點撥】本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關(guān)鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎(chǔ)題.5、B【解題分析】

由M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【題目詳解】解:∵M(jìn)是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【題目點撥】判斷P點是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點.②性質(zhì):或取得最小值③坐標(biāo)法:P點坐標(biāo)是三個頂點坐標(biāo)的平均數(shù).6、C【解題分析】

設(shè)出直線的方程,代入橢圓方程中消去y,根據(jù)判別式大于0求得t的范圍,進(jìn)而利用弦長公式求得|AB|的表達(dá)式,利用t的范圍求得|AB|的最大值.【題目詳解】解:設(shè)直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長|AB|=4.故選:C.【題目點撥】本題主要考查了橢圓的應(yīng)用,直線與橢圓的關(guān)系.常需要把直線與橢圓方程聯(lián)立,利用韋達(dá)定理,判別式找到解決問題的突破口.7、A【解題分析】

模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的的值,當(dāng),,退出循環(huán),輸出結(jié)果.【題目詳解】程序運行過程如下:,;,;,;,;,;,;,,退出循環(huán),輸出結(jié)果為,故選:A.【題目點撥】該題考查的是有關(guān)程序框圖的問題,涉及到的知識點有判斷程序框圖輸出結(jié)果,屬于基礎(chǔ)題目.8、C【解題分析】

畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可,【題目詳解】由題意可知幾何體的直觀圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選:C【題目點撥】本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關(guān)鍵.9、B【解題分析】

計算的和,然后除以,得到“5階幻方”的幻和.【題目詳解】依題意“5階幻方”的幻和為,故選B.【題目點撥】本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項和公式,屬于基礎(chǔ)題.10、A【解題分析】

由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.再由球與圓柱體積公式求解.【題目詳解】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.則幾何體的體積為.故選:.【題目點撥】本題主要考查由三視圖求面積、體積,關(guān)鍵是由三視圖還原原幾何體,意在考查學(xué)生對這些知識的理解掌握水平.11、C【解題分析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內(nèi)用水量超過15立方米的住戶戶數(shù)為,故選C12、B【解題分析】

把已知點坐標(biāo)代入求出,然后驗證各選項.【題目詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個選項都不合題意,若,則函數(shù)為,只有時,,即是對稱軸.故選:B.【題目點撥】本題考查正弦型復(fù)合函數(shù)的對稱軸,掌握正弦函數(shù)的性質(zhì)是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

,求得的通項,進(jìn)而求得,得通項公式,利用等比數(shù)列求和即可.【題目詳解】由題為等差數(shù)列,∴,∴,∴,∴,故答案為【題目點撥】本題考查求等差數(shù)列數(shù)列通項,等比數(shù)列求和,熟記等差等比性質(zhì),熟練運算是關(guān)鍵,是基礎(chǔ)題.14、【解題分析】

畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合即可容易求得結(jié)果.【題目詳解】畫出不等式組表示的平面區(qū)域如下所示:目標(biāo)函數(shù)可轉(zhuǎn)化為與直線平行,數(shù)形結(jié)合可知當(dāng)且僅當(dāng)目標(biāo)函數(shù)過點,取得最大值,故可得,解得.故答案為:.【題目點撥】本題考查由目標(biāo)函數(shù)的最值求參數(shù)值,屬基礎(chǔ)題.15、【解題分析】

由中位線定理和正方體性質(zhì)得,從而作出異面直線所成的角,在三角形中計算可得.【題目詳解】如圖,連接,,,∵分別為棱的中點,∴,又正方體中,即是平行四邊形,∴,∴,(或其補(bǔ)角)就是直線與直線所成角,是等邊三角形,∴=60°,其正切值為.故答案為:.【題目點撥】本題考查異面直線所成的角,解題關(guān)鍵是根據(jù)定義作出異面直線所成的角.16、【解題分析】

數(shù)列滿足知,數(shù)列以3為公比的等比數(shù)列,再由已知結(jié)合等比數(shù)列的性質(zhì)求得的值即可.【題目詳解】,數(shù)列是以3為公比的等比數(shù)列,又,,.故答案為:.【題目點撥】本題考查了等比數(shù)列定義,考查了對數(shù)的運算性質(zhì),考查了等比數(shù)列的通項公式,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】

(1)根據(jù)誘導(dǎo)公式和二倍角公式,將已知等式化為角關(guān)系式,求出,再由二倍角余弦公式,即可求解;(2)在中,根據(jù)面積公式求出長,根據(jù)余弦定理求出,由正弦定理求出,即可求出結(jié)論.【題目詳解】(1),,;(2)在中,由(1)得,,由余弦定理得,,在中,,.【題目點撥】本題考查三角恒等變換求值、面積公式、余弦定理、正弦定理解三角形,考查計算求解能力,屬于中檔題.18、(Ⅰ)見解析(Ⅱ)【解題分析】

(Ⅰ)推導(dǎo)出BC⊥CE,從而EC⊥平面ABCD,進(jìn)而EC⊥BD,再由BD⊥AE,得BD⊥平面AEC,從而BD⊥AC,進(jìn)而四邊形ABCD是菱形,由此能證明AB=AD.(Ⅱ)設(shè)AC與BD的交點為G,推導(dǎo)出EC//FG,取BC的中點為O,連結(jié)OD,則OD⊥BC,以O(shè)為坐標(biāo)原點,以過點O且與CE平行的直線為x軸,以BC為y軸,OD為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BF-D的余弦值.【題目詳解】(Ⅰ)證明:,即,因為平面平面,所以平面,所以,因為,所以平面,所以,因為四邊形是平行四邊形,所以四邊形是菱形,故;解法一:(Ⅱ)設(shè)與的交點為,因為平面,平面平面于,所以,因為是中點,所以是的中點,因為,取的中點為,連接,則,因為平面平面,所以面,以為坐標(biāo)原點,以過點且與平行的直線為軸,以所在直線為軸,以所在直線為軸建立空間直角坐標(biāo)系.不妨設(shè),則,,,,,,,設(shè)平面的法向量,則,取,同理可得平面的法向量,設(shè)平面與平面的夾角為,因為,所以二面角的余弦值為.解法二:(Ⅱ)設(shè)與的交點為,因為平面,平面平面于,所以,因為是中點,所以是的中點,因為,,所以平面,所以,取中點,連接、,因為,所以,故平面,所以,即是二面角的平面角,不妨設(shè),因為,,在中,,所以,所以二面角的余弦值為.【題目點撥】本題考查求空間角中的二面角的余弦值,還考查由空間中線面關(guān)系進(jìn)而證明線線相等,屬于中檔題.19、(1)見解析;(2).【解題分析】

(1)先連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;(2)在圖2中,過點作,垂足為,連接,,證明平面平面,得到點在底面上的投影必落在直線上,記為點在底面上的投影,連接,,得出即是直線與平面所成角,再由題中數(shù)據(jù)求解,即可得出結(jié)果.【題目詳解】(1)連接,因為等腰梯形中(如圖1),,,所以與平行且相等,即四邊形為平行四邊形;所以;又為線段的中點,為中點,易得:四邊形也為平行四邊形,所以;將四邊形沿折起后,平行關(guān)系沒有變化,仍有:,且,所以翻折后四邊形也為平行四邊形;故;因為平面,平面,所以平面;(2)在圖2中,過點作,垂足為,連接,,因為,,翻折前梯形的高為,所以,則,;所以;又,,所以,即,所以;又,且平面,平面,所以平面;因此,平面平面;所以點在底面上的投影必落在直線上;記為點在底面上的投影,連接,,則平面;所以即是直線與平面所成角,因為,所以,因此,,故;因為,所以,因此,故,所以.即直線與平面所成角的正弦值為.【題目點撥】本題主要考查證明線面平行,以及求直線與平面所成的角,熟記線面平行的判定定理,以及線面角的求法即可,屬于??碱}型.20、(Ⅰ),;(Ⅱ).【解題分析】

(Ⅰ)由(為參數(shù))直接消去參數(shù),可得直線的普通方程,把兩邊同時乘以,結(jié)合,可得曲線的直角坐標(biāo)方程;(Ⅱ)把代入,化為關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系及參數(shù)的幾何意義求解.【題目詳解】解:(Ⅰ)由(為參數(shù)),消去參數(shù),可得.∵,∴,即.∴曲線的直角坐標(biāo)方程為;(Ⅱ)把代入,得.設(shè),兩點對應(yīng)的參數(shù)分別為,則,.不妨設(shè),,∴.【題目點撥】本題考查簡單曲線的極坐標(biāo)方程,考查參數(shù)方程化普通方程,明確直線參數(shù)方程中參數(shù)的幾何意義是解題的關(guān)鍵,是中檔題.21、(1)證明見解析;(2).【解題分析】

(1)連接,連接、交于點,并連接,則點為的中點,利用中位線的性質(zhì)得出,,利用空間

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論