2024屆吉林省德惠市九校高三下學期第一次階段測試數(shù)學試題_第1頁
2024屆吉林省德惠市九校高三下學期第一次階段測試數(shù)學試題_第2頁
2024屆吉林省德惠市九校高三下學期第一次階段測試數(shù)學試題_第3頁
2024屆吉林省德惠市九校高三下學期第一次階段測試數(shù)學試題_第4頁
2024屆吉林省德惠市九校高三下學期第一次階段測試數(shù)學試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆吉林省德惠市九校高三下學期第一次階段測試數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則的大小關(guān)系為A. B. C. D.2.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.3.設(shè)函數(shù),若在上有且僅有5個零點,則的取值范圍為()A. B. C. D.4.已知復數(shù)滿足:,則的共軛復數(shù)為()A. B. C. D.5.已知向量,則是的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充要條件6.已知函數(shù)有兩個不同的極值點,,若不等式有解,則的取值范圍是()A. B.C. D.7.已知集合則()A. B. C. D.8.的展開式中的系數(shù)是-10,則實數(shù)()A.2 B.1 C.-1 D.-29.過雙曲線的左焦點作傾斜角為的直線,若與軸的交點坐標為,則該雙曲線的標準方程可能為()A. B. C. D.10.已知復數(shù)z滿足(i為虛數(shù)單位),則在復平面內(nèi)復數(shù)z對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.定義在上的奇函數(shù)滿足,若,,則()A. B.0 C.1 D.212.若復數(shù)滿足,其中為虛數(shù)單位,是的共軛復數(shù),則復數(shù)()A. B. C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,各項系數(shù)之和為,則展開式中的常數(shù)項為__________________.14.,則f(f(2))的值為____________.15.在中,已知是的中點,且,點滿足,則的取值范圍是_______.16.已知內(nèi)角的對邊分別為外接圓的面積為,則的面積為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)設(shè)點,若直線與曲線相交于、兩點,求的值18.(12分)設(shè)橢圓的右焦點為,過的直線與交于兩點,點的坐標為.(1)當直線的傾斜角為時,求線段AB的中點的橫坐標;(2)設(shè)點A關(guān)于軸的對稱點為C,求證:M,B,C三點共線;(3)設(shè)過點M的直線交橢圓于兩點,若橢圓上存在點P,使得(其中O為坐標原點),求實數(shù)的取值范圍.19.(12分)已知函數(shù).(Ⅰ)求在點處的切線方程;(Ⅱ)已知在上恒成立,求的值.(Ⅲ)若方程有兩個實數(shù)根,且,證明:.20.(12分)如圖,三棱柱中,側(cè)面為菱形,.(1)求證:平面;(2)若,求二面角的余弦值.21.(12分)已知曲線的參數(shù)方程為為參數(shù),曲線的參數(shù)方程為為參數(shù)).(1)求與的普通方程;(2)若與相交于,兩點,且,求的值.22.(10分)棉花的纖維長度是評價棉花質(zhì)量的重要指標,某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實驗地分別種植某品種的棉花,為了評價該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機抽取21根棉花纖維進行統(tǒng)計,結(jié)果如下表:(記纖維長度不低于311的為“長纖維”,其余為“短纖維”)纖維長度甲地(根數(shù))34454乙地(根數(shù))112116(1)由以上統(tǒng)計數(shù)據(jù),填寫下面列聯(lián)表,并判斷能否在犯錯誤概率不超過1.125的前提下認為“纖維長度與土壤環(huán)境有關(guān)系”.甲地乙地總計長纖維短纖維總計附:(1);(2)臨界值表;1.111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)現(xiàn)從上述41根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進行檢測,在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】

分析:由題意結(jié)合對數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)性和指數(shù)的性質(zhì)整理計算即可確定a,b,c的大小關(guān)系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項.點睛:對于指數(shù)冪的大小的比較,我們通常都是運用指數(shù)函數(shù)的單調(diào)性,但很多時候,因冪的底數(shù)或指數(shù)不相同,不能直接利用函數(shù)的單調(diào)性進行比較.這就必須掌握一些特殊方法.在進行指數(shù)冪的大小比較時,若底數(shù)不同,則首先考慮將其轉(zhuǎn)化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調(diào)性進行判斷.對于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準確.2、A【解題分析】

由余弦定理求出角,再由三角形面積公式計算即可.【題目詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【題目點撥】本題主要考查了余弦定理的應(yīng)用,三角形的面積公式,考查了學生的運算求解能力.3、A【解題分析】

由求出范圍,結(jié)合正弦函數(shù)的圖象零點特征,建立不等量關(guān)系,即可求解.【題目詳解】當時,,∵在上有且僅有5個零點,∴,∴.故選:A.【題目點撥】本題考查正弦型函數(shù)的性質(zhì),整體代換是解題的關(guān)鍵,屬于基礎(chǔ)題.4、B【解題分析】

轉(zhuǎn)化,為,利用復數(shù)的除法化簡,即得解【題目詳解】復數(shù)滿足:所以故選:B【題目點撥】本題考查了復數(shù)的除法和復數(shù)的基本概念,考查了學生概念理解,數(shù)學運算的能力,屬于基礎(chǔ)題.5、A【解題分析】

向量,,,則,即,或者-1,判斷出即可.【題目詳解】解:向量,,,則,即,或者-1,所以是或者的充分不必要條件,故選:A.【題目點撥】本小題主要考查充分、必要條件的判斷,考查向量平行的坐標表示,屬于基礎(chǔ)題.6、C【解題分析】

先求導得(),由于函數(shù)有兩個不同的極值點,,轉(zhuǎn)化為方程有兩個不相等的正實數(shù)根,根據(jù),,,求出的取值范圍,而有解,通過分裂參數(shù)法和構(gòu)造新函數(shù),通過利用導數(shù)研究單調(diào)性、最值,即可得出的取值范圍.【題目詳解】由題可得:(),因為函數(shù)有兩個不同的極值點,,所以方程有兩個不相等的正實數(shù)根,于是有解得.若不等式有解,所以因為.設(shè),,故在上單調(diào)遞增,故,所以,所以的取值范圍是.故選:C.【題目點撥】本題考查利用導數(shù)研究函數(shù)單調(diào)性、最值來求參數(shù)取值范圍,以及運用分離參數(shù)法和構(gòu)造函數(shù)法,還考查分析和計算能力,有一定的難度.7、B【解題分析】

解對數(shù)不等式可得集合A,由交集運算即可求解.【題目詳解】集合解得由集合交集運算可得,故選:B.【題目點撥】本題考查了集合交集的簡單運算,對數(shù)不等式解法,屬于基礎(chǔ)題.8、C【解題分析】

利用通項公式找到的系數(shù),令其等于-10即可.【題目詳解】二項式展開式的通項為,令,得,則,所以,解得.故選:C【題目點撥】本題考查求二項展開式中特定項的系數(shù),考查學生的運算求解能力,是一道容易題.9、A【解題分析】

直線的方程為,令,得,得到a,b的關(guān)系,結(jié)合選項求解即可【題目詳解】直線的方程為,令,得.因為,所以,只有選項滿足條件.故選:A【題目點撥】本題考查直線與雙曲線的位置關(guān)系以及雙曲線的標準方程,考查運算求解能力.10、D【解題分析】

根據(jù)復數(shù)運算,求得,再求其對應(yīng)點即可判斷.【題目詳解】,故其對應(yīng)點的坐標為.其位于第四象限.故選:D.【題目點撥】本題考查復數(shù)的運算,以及復數(shù)對應(yīng)點的坐標,屬綜合基礎(chǔ)題.11、C【解題分析】

首先判斷出是周期為的周期函數(shù),由此求得所求表達式的值.【題目詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【題目點撥】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.12、D【解題分析】

根據(jù)復數(shù)的四則運算法則先求出復數(shù)z,再計算它的模長.【題目詳解】解:復數(shù)z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【題目點撥】本題主要考查了復數(shù)的計算問題,要求熟練掌握復數(shù)的四則運算以及復數(shù)長度的計算公式,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

利用展開式各項系數(shù)之和求得的值,由此寫出展開式的通項,令指數(shù)為零求得參數(shù)的值,代入通項計算即可得解.【題目詳解】的展開式各項系數(shù)和為,得,所以,的展開式通項為,令,得,因此,展開式中的常數(shù)項為.故答案為:.【題目點撥】本題考查二項展開式中常數(shù)項的計算,涉及二項展開式中各項系數(shù)和的計算,考查計算能力,屬于基礎(chǔ)題.14、1【解題分析】

先求f(1),再根據(jù)f(1)值所在區(qū)間求f(f(1)).【題目詳解】由題意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案為:1.【題目點撥】本題考查分段函數(shù)求值,考查對應(yīng)性以及基本求解能力.15、【解題分析】

由中點公式的向量形式可得,即有,設(shè),有,再分別討論三點共線和不共線時的情況,找到的關(guān)系,即可根據(jù)函數(shù)知識求出范圍.【題目詳解】是的中點,∴,即設(shè),于是(1)當共線時,因為,①若點在之間,則,此時,;②若點在的延長線上,則,此時,.(2)當不共線時,根據(jù)余弦定理可得,解得,由,解得.綜上,故答案為:.【題目點撥】本題主要考查學中點公式的向量形式和數(shù)量積的定義的應(yīng)用,以及余弦定理的應(yīng)用,涉及到函數(shù)思想和分類討論思想的應(yīng)用,解題關(guān)鍵是建立函數(shù)關(guān)系式,屬于中檔題.16、【解題分析】

由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內(nèi)角,從而有,于是可得三角形邊長,可得面積.【題目詳解】設(shè)外接圓半徑為,則,由正弦定理,得,∴,,.故答案為:.【題目點撥】本題考查正弦定理,利用正弦定理求出三角形的內(nèi)角,然后可得邊長,從而得面積,掌握正弦定理是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的普通方程為,的直角坐標方程為;(2).【解題分析】

(1)在曲線的參數(shù)方程中消去參數(shù)可得出曲線的普通方程,利用兩角和的正弦公式以及可將直線的極坐標方程化為普通方程;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),并設(shè)點、所對應(yīng)的參數(shù)分別為、,利用韋達定理可求得的值.【題目詳解】(1)由,得,,曲線的普通方程為,由,得,直線的直角坐標方程為;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入,得,則,設(shè)、兩點對應(yīng)參數(shù)分別為、,,,,,.【題目點撥】本題考查了參數(shù)方程、極坐標方程與普通方程之間的轉(zhuǎn)化,同時也考查了直線參數(shù)方程幾何意義的應(yīng)用,考查計算能力,屬于中等題.18、(1)AB的中點的橫坐標為;(2)證明見解析;(3)【解題分析】

設(shè).(1)因為直線的傾斜角為,,所以直線AB的方程為,聯(lián)立方程組,消去并整理,得,則,故線段AB的中點的橫坐標為.(2)根據(jù)題意得點,若直線AB的斜率為0,則直線AB的方程為,A、C兩點重合,顯然M,B,C三點共線;若直線AB的斜率不為0,設(shè)直線AB的方程為,聯(lián)立方程組,消去并整理得,則,設(shè)直線BM、CM的斜率分別為、,則,即=,即M,B,C三點共線.(3)根據(jù)題意,得直線GH的斜率存在,設(shè)該直線的方程為,設(shè),聯(lián)立方程組,消去并整理,得,由,整理得,又,所以,結(jié)合,得,當時,該直線為軸,即,此時橢圓上任意一點P都滿足,此時符合題意;當時,由,得,代入橢圓C的方程,得,整理,得,再結(jié)合,得到,即,綜上,得到實數(shù)的取值范圍是.19、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析【解題分析】

(Ⅰ)根據(jù)導數(shù)的幾何意義求解即可.(Ⅱ)求導分析函數(shù)的單調(diào)性,并構(gòu)造函數(shù)根據(jù)單調(diào)性分析可得只能在處取得最小值求解即可.(Ⅲ)根據(jù)(Ⅰ)(Ⅱ)的結(jié)論可知,在上恒成立,再分別設(shè)的解為、.再根據(jù)不等式的性質(zhì)證明即可.【題目詳解】(Ⅰ)由題,故.且.故在點處的切線方程為.(Ⅱ)設(shè)恒成立,故.設(shè)函數(shù)則,故在上單調(diào)遞減且,又在上單調(diào)遞增.又,即且,故只能在處取得最小值,當時,此時,且在上,單調(diào)遞減.在上,單調(diào)遞增.故,滿足題意;當時,此時有解,且在上單調(diào)遞減,與矛盾;當時,此時有解,且在上單調(diào)遞減,與矛盾;故(Ⅲ).由(Ⅰ),在上單調(diào)遞減且,又在上單調(diào)遞增,故最多一根.又因為,,故設(shè)的解為,因為,故.所以在遞減,在遞增.因為方程有兩個實數(shù)根,故.結(jié)合(Ⅰ)(Ⅱ)有,在上恒成立.設(shè)的解為,則;設(shè)的解為,則.故,.故,得證.【題目點撥】本題主要考查了導數(shù)的幾何意義以及根據(jù)函數(shù)的單調(diào)性與最值求解參數(shù)值的問題.同時也考查了構(gòu)造函數(shù)結(jié)合前問的結(jié)論證明不等式的方法.屬于難題.20、(1)見解析(2)【解題分析】

(1)根據(jù)菱形性質(zhì)可知,結(jié)合可得,進而可證明,即,即可由線面垂直的判定定理證明平面;(2)結(jié)合(1)可證明兩兩互相垂直.即以為坐標原點,的方向為軸正方向,為單位長度,建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,即可求得二面角的余弦值.【題目詳解】(1)證明:設(shè),連接,如下圖所示:∵側(cè)面為菱形,∴,且為及的中點,又,則為直角三角形,,又,,即,而為平面內(nèi)的兩條相交直線,平面.(2)平面,平面,,即,從而兩兩互相垂直.以為坐標原點,的方向為軸正方向,為單位長度,建立如圖的空間直角坐標系,為等邊三角形,,,,設(shè)平面的法向量為,則,即,∴可取,設(shè)平面的法向量為,則.同理可取,由圖示可知二面角為銳二面角,∴二面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論