版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省師范大學附屬中學2024屆高三第二次診斷性考試數(shù)學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,若,則實數(shù)的值可以為()A. B. C. D.2.在中,角,,的對邊分別為,,,若,,,則()A. B.3 C. D.43.在中,角所對的邊分別為,已知,.當變化時,若存在最大值,則正數(shù)的取值范圍為A. B. C. D.4.如圖是一個幾何體的三視圖,則該幾何體的體積為()A. B. C. D.5.秦九韶是我國南宋時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入的值為2,則輸出的值為A. B. C. D.6.已知m為實數(shù),直線:,:,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件7.數(shù)列的通項公式為.則“”是“為遞增數(shù)列”的()條件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要8.已知復數(shù),(為虛數(shù)單位),若為純虛數(shù),則()A. B.2 C. D.9.《九章算術》中記載,塹堵是底面為直角三角形的直三棱柱,陽馬指底面為矩形,一側棱垂直于底面的四棱錐.如圖,在塹堵中,,,當陽馬體積的最大值為時,塹堵的外接球的體積為()A. B. C. D.10.已知命題:是“直線和直線互相垂直”的充要條件;命題:對任意都有零點;則下列命題為真命題的是()A. B. C. D.11.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.612.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,分別是橢圓:()的左、右焦點,過左焦點的直線與橢圓交于、兩點,且,,則橢圓的離心率為__________.14.函數(shù)與的圖象上存在關于軸的對稱點,則實數(shù)的取值范圍為______.15.設等差數(shù)列的前項和為,若,,則______,的最大值是______.16.(5分)如圖是一個算法的流程圖,若輸出的值是,則輸入的值為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為,已知.(1)求角的大小;(2)若,求的面積.18.(12分)在中,角,,的對邊分別為,,,已知.(1)若,,成等差數(shù)列,求的值;(2)是否存在滿足為直角?若存在,求的值;若不存在,請說明理由.19.(12分)在四棱錐中,底面為直角梯形,,,,,,,分別為,的中點.(1)求證:.(2)若,求二面角的余弦值.20.(12分)如圖,三棱柱的所有棱長均相等,在底面上的投影在棱上,且∥平面(Ⅰ)證明:平面平面;(Ⅱ)求直線與平面所成角的余弦值.21.(12分)在中,角所對的邊分別是,且.(1)求;(2)若,求.22.(10分)的內角的對邊分別為,已知.(1)求的大??;(2)若,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】
由題意可得,根據(jù),即可得出,從而求出結果.【題目詳解】,且,,∴的值可以為.故選:D.【題目點撥】考查描述法表示集合的定義,以及并集的定義及運算.2、B【解題分析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。3、C【解題分析】
因為,,所以根據(jù)正弦定理可得,所以,,所以,其中,,因為存在最大值,所以由,可得,所以,所以,解得,所以正數(shù)的取值范圍為,故選C.4、A【解題分析】
根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【題目詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.【題目點撥】本題考查三視圖及棱柱的體積,屬于基礎題.5、C【解題分析】
由題意,模擬程序的運行,依次寫出每次循環(huán)得到的,的值,當時,不滿足條件,跳出循環(huán),輸出的值.【題目詳解】解:初始值,,程序運行過程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循環(huán),輸出的值為其中①②①—②得.故選:.【題目點撥】本題主要考查了循環(huán)結構的程序框圖的應用,正確依次寫出每次循環(huán)得到,的值是解題的關鍵,屬于基礎題.6、A【解題分析】
根據(jù)直線平行的等價條件,求出m的值,結合充分條件和必要條件的定義進行判斷即可.【題目詳解】當m=1時,兩直線方程分別為直線l1:x+y﹣1=0,l2:x+y﹣2=0滿足l1∥l2,即充分性成立,當m=0時,兩直線方程分別為y﹣1=0,和﹣2x﹣2=0,不滿足條件.當m≠0時,則l1∥l2?,由得m2﹣3m+2=0得m=1或m=2,由得m≠2,則m=1,即“m=1”是“l(fā)1∥l2”的充要條件,故答案為:A【題目點撥】(1)本題主要考查充要條件的判斷,考查兩直線平行的等價條件,意在考查學生對這些知識的掌握水平和分析推理能力.(2)本題也可以利用下面的結論解答,直線和直線平行,則且兩直線不重合,求出參數(shù)的值后要代入檢驗看兩直線是否重合.7、A【解題分析】
根據(jù)遞增數(shù)列的特點可知,解得,由此得到若是遞增數(shù)列,則,根據(jù)推出關系可確定結果.【題目詳解】若“是遞增數(shù)列”,則,即,化簡得:,又,,,則是遞增數(shù)列,是遞增數(shù)列,“”是“為遞增數(shù)列”的必要不充分條件.故選:.【題目點撥】本題考查充分條件與必要條件的判斷,涉及到根據(jù)數(shù)列的單調性求解參數(shù)范圍,屬于基礎題.8、C【解題分析】
把代入,利用復數(shù)代數(shù)形式的除法運算化簡,由實部為0且虛部不為0求解即可.【題目詳解】∵,∴,∵為純虛數(shù),∴,解得.故選C.【題目點撥】本題考查復數(shù)代數(shù)形式的除法運算,考查復數(shù)的基本概念,是基礎題.9、B【解題分析】
利用均值不等式可得,即可求得,進而求得外接球的半徑,即可求解.【題目詳解】由題意易得平面,所以,當且僅當時等號成立,又陽馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【題目點撥】本題以中國傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應用,體現(xiàn)了數(shù)學運算、直觀想象等核心素養(yǎng).10、A【解題分析】
先分別判斷每一個命題的真假,再利用復合命題的真假判斷確定答案即可.【題目詳解】當時,直線和直線,即直線為和直線互相垂直,所以“”是直線和直線互相垂直“的充分條件,當直線和直線互相垂直時,,解得.所以“”是直線和直線互相垂直“的不必要條件.:“”是直線和直線互相垂直“的充分不必要條件,故是假命題.當時,沒有零點,所以命題是假命題.所以是真命題,是假命題,是假命題,是假命題.故選:.【題目點撥】本題主要考查充要條件的判斷和兩直線的位置關系,考查二次函數(shù)的圖象,考查學生對這些知識的理解掌握水平.11、C【解題分析】
根據(jù)列方程,由此求得的值,進而求得.【題目詳解】由于,所以,即,解得.所以所以.故選:C【題目點撥】本小題主要考查向量垂直的表示,考查向量數(shù)量積的運算,考查向量模的求法,屬于基礎題.12、D【解題分析】
根據(jù)面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【題目詳解】對于A,當,,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當,,時,則,故不能作為的充分條件,故B錯誤;對于C,當,,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當,,,則一定能得到,故D正確.故選:D.【題目點撥】本題考查了面面垂直的判斷問題,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
設,則,,由知,,,作,垂足為C,則C為的中點,在和中分別求出,進而求出的關系式,即可求出橢圓的離心率.【題目詳解】如圖,設,則,,由橢圓定義知,,因為,所以,,作,垂足為C,則C為的中點,在中,因為,所以,在中,由余弦定理可得,,即,解得,所以橢圓的離心率為.故答案為:【題目點撥】本題考查橢圓的離心率和直線與橢圓的位置關系;利用橢圓的定義,結合焦點三角形和余弦定理是求解本題的關鍵;屬于中檔題、??碱}型.14、【解題分析】
先求得與關于軸對稱的函數(shù),將問題轉化為與的圖象有交點,即方程有解.對分成三種情況進行分類討論,由此求得實數(shù)的取值范圍.【題目詳解】因為關于軸對稱的函數(shù)為,因為函數(shù)與的圖象上存在關于軸的對稱點,所以與的圖象有交點,方程有解.時符合題意.時轉化為有解,即,的圖象有交點,是過定點的直線,其斜率為,若,則函數(shù)與的圖象必有交點,滿足題意;若,設,相切時,切點的坐標為,則,解得,切線斜率為,由圖可知,當,即時,,的圖象有交點,此時,與的圖象有交點,函數(shù)與的圖象上存在關于軸的對稱點,綜上可得,實數(shù)的取值范圍為.故答案為:【題目點撥】本小題主要考查利用導數(shù)求解函數(shù)的零點以及對稱性,函數(shù)與方程等基礎知識,考查學生分析問題,解決問題的能力,推理與運算求解能力,轉化與化歸思想和應用意識.15、【解題分析】
利用等差數(shù)列前項和公式,列出方程組,求出首項和公差的值,利用等差數(shù)列的通項公式可求出數(shù)列的通項公式,可求出的表達式,然后利用雙勾函數(shù)的單調性可求出的最大值.【題目詳解】(1)設等差數(shù)列的公差為,則,解得,所以,數(shù)列的通項公式為;(2),,令,則且,,由雙勾函數(shù)的單調性可知,函數(shù)在時單調遞減,在時單調遞增,當或時,取得最大值為.故答案為:;.【題目點撥】本題考查等差數(shù)列的通項公式、前項和的求法,考查等差數(shù)列的性質等基礎知識,考查運算求解能力,是中檔題.16、或【解題分析】
依題意,當時,由,即,解得;當時,由,解得或(舍去).綜上,得或.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】
(1)利用正弦定理邊化角,再利用二倍角的正弦公式與正弦的和角公式化簡求解即可.(2)由(1)有,根據(jù)正弦定理可得,進而求得的值,再根據(jù)三角形的面積公式求解即可.【題目詳解】(1)由,得,得,由正弦定理得,顯然,同時除以,得.所以.所以.顯然,所以,解得.又,所以.(2)若,由正弦定理得,得,解得.又,所以.【題目點撥】本題主要考查了正余弦定理與面積公式在解三角形中的運用,需要根據(jù)題意用正弦定理進行邊角互化,再根據(jù)三角恒等變換進行化簡求解等.屬于中檔題.18、見解析【解題分析】
(1)因為,,成等差數(shù)列,所以,由余弦定理可得,因為,所以,即,所以.(2)若B為直角,則,,由及正弦定理可得,所以,即,上式兩邊同時平方,可得,所以(*).又,所以,,所以,與(*)矛盾,所以不存在滿足為直角.19、(1)見解析(2)【解題分析】
(1)由已知可證明平面,從而得證面面垂直,再由,得線面垂直,從而得,由直角三角形得結論;(2)以為軸建立空間直角坐標系,用空間向量法示二面角.【題目詳解】(1)證明:連接,,.,,平面.平面,平面平面.,為的中點,.平面平面,平面.平面,.為斜邊的中點,,(2),由(1)可知,為等腰直角三角形,則.以為坐標原點建立如圖所示的空間直角坐標系,則,,,,則,記平面的法向量為由得到,取,可得,則.易知平面的法向量為.記二面角的平面角為,且由圖可知為銳角,則,所以二面角的余弦值為.【題目點撥】本題考查用面面垂直的性質定理證明線面垂直,從而得線線垂直,考查用空間向量法求二面角.在立體幾何中求異面直線成的角、直線與平面所成的角、二面角等空間角時,可以建立空間直角坐標系,用空間向量法求解空間角,可避免空間角的作證過程,通過計算求解.20、(Ⅰ)見解析(Ⅱ)【解題分析】
(Ⅰ)連接交于點,連接,由于平面,得出,根據(jù)線線位置關系得出,利用線面垂直的判定和性質得出,結合條件以及面面垂直的判定,即可證出平面平面;(Ⅱ)根據(jù)題意,建立空間直角坐標系,利用空間向量法分別求出和平面的法向量,利用空間向量線面角公式,即可求出直線與平面所成角的余弦值.【題目詳解】解:(Ⅰ)證明:連接交于點,連接,則平面平面,平面,,為的中點,為的中點,平面,,平面,平面,平面平面(Ⅱ)建立如圖所示空間直角坐標系,設則,,,,,設平面的法向量為,則,取得,設直線與平面所成角為,直線與平面所成角的余弦值為.【題目點撥】本題考查面面垂直的判定以及利用空間向量法求線面角的余弦值,考查空間想象能力和推理能力.21、(1)(2)【解題分析】
(1)根據(jù)正弦定理到,得到答案.(2)計算,再利用余弦定理計算得到答案.【題目詳解】(1)由,可得,因為,所以,所以.(2),又因為,所以.因為,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度礦山挖掘機轉讓及配套服務合同3篇
- 吊車吊避雷針施工方案
- 陜西抗裂貼施工方案
- 二零二五版衛(wèi)生間防水補漏及個性化定制裝修合同3篇
- 預埋環(huán)網(wǎng)柜安裝施工方案
- 二零二五年度房產買賣代理委托合同及授權委托書3篇
- 二零二五年度農業(yè)車輛司機聘用協(xié)議3篇
- 二零二五年度戶外活動演出委托合同示范文本3篇
- 二零二五年度教育培訓分公司注冊與課程開發(fā)合同3篇
- 水下沉井施工方案
- 危險品倉儲危險廢物處置與管理考核試卷
- 2024版汽車融資擔保合同范本版B版
- 浙江寧波鎮(zhèn)海區(qū)2025屆中考生物對點突破模擬試卷含解析
- 湖南省長沙市2025年新高考適應性考試生物學模擬試題(含答案)
- 工業(yè)自動化設備維護保養(yǎng)方案
- 《中醫(yī)心理學》課件
- 心肌梗死病人護理課件
- 宮頸癌中醫(yī)護理查房
- 《費曼學習法》讀后感
- 2023年安徽省公務員錄用考試《行測》真題及答案解析
- 《阻燃材料與技術》課件 顏龍 第3、4講 阻燃基本理論、阻燃劑性能與應用
評論
0/150
提交評論