




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆上海市長(zhǎng)寧青浦寶山嘉定四區(qū)招生全國(guó)統(tǒng)一考試仿真卷(十二)-高考數(shù)學(xué)試題仿真試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù).設(shè),若對(duì)任意不相等的正數(shù),,恒有,則實(shí)數(shù)a的取值范圍是()A. B.C. D.2.已知集合,,則()A. B.C.或 D.3.已知復(fù)數(shù),滿(mǎn)足,則()A.1 B. C. D.54.某校8位學(xué)生的本次月考成績(jī)恰好都比上一次的月考成績(jī)高出50分,則以該8位學(xué)生這兩次的月考成績(jī)各自組成樣本,則這兩個(gè)樣本不變的數(shù)字特征是()A.方差 B.中位數(shù) C.眾數(shù) D.平均數(shù)5.將函數(shù)f(x)=sin3x-cos3x+1的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,給出下列關(guān)于g(x)的結(jié)論:①它的圖象關(guān)于直線(xiàn)x=對(duì)稱(chēng);②它的最小正周期為;③它的圖象關(guān)于點(diǎn)(,1)對(duì)稱(chēng);④它在[]上單調(diào)遞增.其中所有正確結(jié)論的編號(hào)是()A.①② B.②③ C.①②④ D.②③④6.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于()cm3A. B. C. D.7.如圖,在平行四邊形中,為對(duì)角線(xiàn)的交點(diǎn),點(diǎn)為平行四邊形外一點(diǎn),且,,則()A. B.C. D.8.一個(gè)陶瓷圓盤(pán)的半徑為,中間有一個(gè)邊長(zhǎng)為的正方形花紋,向盤(pán)中投入1000粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計(jì)圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.1479.已知,且,則()A. B. C. D.10.設(shè)為拋物線(xiàn)的焦點(diǎn),,,為拋物線(xiàn)上三點(diǎn),若,則().A.9 B.6 C. D.11.函數(shù)在的圖象大致為A. B.C. D.12.函數(shù)的圖象可能為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)恒成立,則實(shí)數(shù)的取值范圍是_____.14.已知為橢圓內(nèi)一定點(diǎn),經(jīng)過(guò)引一條弦,使此弦被點(diǎn)平分,則此弦所在的直線(xiàn)方程為_(kāi)_______________.15.在平面直角坐標(biāo)系中,點(diǎn)在曲線(xiàn):上,且在第四象限內(nèi).已知曲線(xiàn)在點(diǎn)處的切線(xiàn)為,則實(shí)數(shù)的值為_(kāi)_________.16.甲,乙兩隊(duì)參加關(guān)于“一帶一路”知識(shí)競(jìng)賽,甲隊(duì)有編號(hào)為1,2,3的三名運(yùn)動(dòng)員,乙隊(duì)有編號(hào)為1,2,3,4的四名運(yùn)動(dòng)員,若兩隊(duì)各出一名隊(duì)員進(jìn)行比賽,則出場(chǎng)的兩名運(yùn)動(dòng)員編號(hào)相同的概率為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中,角的對(duì)邊分別為,且.(1)求角的大?。唬?)已知外接圓半徑,求的周長(zhǎng).18.(12分)已知函數(shù)(是自然對(duì)數(shù)的底數(shù),).(1)求函數(shù)的圖象在處的切線(xiàn)方程;(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;(3)若函數(shù)在區(qū)間上有兩個(gè)極值點(diǎn),且恒成立,求滿(mǎn)足條件的的最小值(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值).19.(12分)在平面直角坐標(biāo)系中,已知直線(xiàn)l的參數(shù)方程為(t為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且與直角坐標(biāo)系長(zhǎng)度單位相同的極坐標(biāo)系中,曲線(xiàn)C的極坐標(biāo)方程是.(1)求直線(xiàn)l的普通方程與曲線(xiàn)C的直角坐標(biāo)方程;(2)若直線(xiàn)l與曲線(xiàn)C相交于兩點(diǎn)A,B,求線(xiàn)段的長(zhǎng).20.(12分)已知橢圓的右頂點(diǎn)為,為上頂點(diǎn),點(diǎn)為橢圓上一動(dòng)點(diǎn).(1)若,求直線(xiàn)與軸的交點(diǎn)坐標(biāo);(2)設(shè)為橢圓的右焦點(diǎn),過(guò)點(diǎn)與軸垂直的直線(xiàn)為,的中點(diǎn)為,過(guò)點(diǎn)作直線(xiàn)的垂線(xiàn),垂足為,求證:直線(xiàn)與直線(xiàn)的交點(diǎn)在橢圓上.21.(12分)已知六面體如圖所示,平面,,,,,,是棱上的點(diǎn),且滿(mǎn)足.(1)求證:直線(xiàn)平面;(2)求二面角的正弦值.22.(10分)某公園有一塊邊長(zhǎng)為3百米的正三角形空地,擬將它分割成面積相等的三個(gè)區(qū)域,用來(lái)種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點(diǎn)D,E分別在邊,上);再取的中點(diǎn)M,建造直道(如圖).設(shè),,(單位:百米).(1)分別求,關(guān)于x的函數(shù)關(guān)系式;(2)試確定點(diǎn)D的位置,使兩條直道的長(zhǎng)度之和最小,并求出最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】
求解的導(dǎo)函數(shù),研究其單調(diào)性,對(duì)任意不相等的正數(shù),構(gòu)造新函數(shù),討論其單調(diào)性即可求解.【題目詳解】的定義域?yàn)椋?,?dāng)時(shí),,故在單調(diào)遞減;不妨設(shè),而,知在單調(diào)遞減,從而對(duì)任意、,恒有,即,,,令,則,原不等式等價(jià)于在單調(diào)遞減,即,從而,因?yàn)椋詫?shí)數(shù)a的取值范圍是故選:D.【題目點(diǎn)撥】此題考查含參函數(shù)研究單調(diào)性問(wèn)題,根據(jù)參數(shù)范圍化簡(jiǎn)后構(gòu)造新函數(shù)轉(zhuǎn)換為含參恒成立問(wèn)題,屬于一般性題目.2、D【解題分析】
首先求出集合,再根據(jù)補(bǔ)集的定義計(jì)算可得;【題目詳解】解:∵,解得∴,∴.故選:D【題目點(diǎn)撥】本題考查補(bǔ)集的概念及運(yùn)算,一元二次不等式的解法,屬于基礎(chǔ)題.3、A【解題分析】
首先根據(jù)復(fù)數(shù)代數(shù)形式的除法運(yùn)算求出,求出的模即可.【題目詳解】解:,,故選:A【題目點(diǎn)撥】本題考查了復(fù)數(shù)求模問(wèn)題,考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.4、A【解題分析】
通過(guò)方差公式分析可知方差沒(méi)有改變,中位數(shù)、眾數(shù)和平均數(shù)都發(fā)生了改變.【題目詳解】由題可知,中位數(shù)和眾數(shù)、平均數(shù)都有變化.本次和上次的月考成績(jī)相比,成績(jī)和平均數(shù)都增加了50,所以沒(méi)有改變,根據(jù)方差公式可知方差不變.故選:A【題目點(diǎn)撥】本題主要考查樣本的數(shù)字特征,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.5、B【解題分析】
根據(jù)函數(shù)圖象的平移變換公式求出函數(shù)的解析式,再利用正弦函數(shù)的對(duì)稱(chēng)性、單調(diào)區(qū)間等相關(guān)性質(zhì)求解即可.【題目詳解】因?yàn)閒(x)=sin3x-cos3x+1=2sin(3x-)+1,由圖象的平移變換公式知,函數(shù)g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期為,故②正確;令3x+=kπ+,得x=+(k∈Z),所以x=不是對(duì)稱(chēng)軸,故①錯(cuò)誤;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函數(shù)g(x)的圖象關(guān)于點(diǎn)(,1)對(duì)稱(chēng),故③正確;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④錯(cuò)誤;故選:B【題目點(diǎn)撥】本題考查圖象的平移變換和正弦函數(shù)的對(duì)稱(chēng)性、單調(diào)性和最小正周期等性質(zhì);考查運(yùn)算求解能力和整體代換思想;熟練掌握正弦函數(shù)的對(duì)稱(chēng)性、單調(diào)性和最小正周期等相關(guān)性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型6、D【解題分析】解:根據(jù)幾何體的三視圖知,該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù),計(jì)算它的體積為:V=V三棱柱+V半圓柱=×2×2×1+?π?12×1=(6+1.5π)cm1.故答案為6+1.5π.點(diǎn)睛:根據(jù)幾何體的三視圖知該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù)計(jì)算它的體積即可.7、D【解題分析】
連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線(xiàn)性運(yùn)算即可求出答案【題目詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【題目點(diǎn)撥】本題考查向量的線(xiàn)性運(yùn)算問(wèn)題,屬于基礎(chǔ)題8、B【解題分析】
結(jié)合隨機(jī)模擬概念和幾何概型公式計(jì)算即可【題目詳解】如圖,由幾何概型公式可知:.故選:B【題目點(diǎn)撥】本題考查隨機(jī)模擬的概念和幾何概型,屬于基礎(chǔ)題9、B【解題分析】分析:首先利用同角三角函數(shù)關(guān)系式,結(jié)合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關(guān)于的式子,代入從而求得結(jié)果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點(diǎn)睛:該題考查的是有關(guān)同角三角函數(shù)關(guān)系式以及倍角公式的應(yīng)用,在解題的過(guò)程中,需要對(duì)已知真切求余弦的方法要明確,可以應(yīng)用同角三角函數(shù)關(guān)系式求解,也可以結(jié)合三角函數(shù)的定義式求解.10、C【解題分析】
設(shè),,,由可得,利用定義將用表示即可.【題目詳解】設(shè),,,由及,得,故,所以.故選:C.【題目點(diǎn)撥】本題考查利用拋物線(xiàn)定義求焦半徑的問(wèn)題,考查學(xué)生等價(jià)轉(zhuǎn)化的能力,是一道容易題.11、A【解題分析】
因?yàn)?,所以排除C、D.當(dāng)從負(fù)方向趨近于0時(shí),,可得.故選A.12、C【解題分析】
先根據(jù)是奇函數(shù),排除A,B,再取特殊值驗(yàn)證求解.【題目詳解】因?yàn)?,所以是奇函?shù),故排除A,B,又,故選:C【題目點(diǎn)撥】本題主要考查函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
若函數(shù)恒成立,即,求導(dǎo)得,在三種情況下,分別討論函數(shù)單調(diào)性,求出每種情況時(shí)的,解關(guān)于的不等式,再取并集,即得?!绢}目詳解】由題意得,只要即可,,當(dāng)時(shí),令解得,令,解得,單調(diào)遞減,令,解得,單調(diào)遞增,故在時(shí),有最小值,,若恒成立,則,解得;當(dāng)時(shí),恒成立;當(dāng)時(shí),,單調(diào)遞增,,不合題意,舍去.綜上,實(shí)數(shù)的取值范圍是.故答案為:【題目點(diǎn)撥】本題考查恒成立條件下,求參數(shù)的取值范圍,是??碱}型。14、【解題分析】
設(shè)弦所在的直線(xiàn)與橢圓相交于、兩點(diǎn),利用點(diǎn)差法可求得直線(xiàn)的斜率,進(jìn)而可求得直線(xiàn)的點(diǎn)斜式方程,化為一般式即可.【題目詳解】設(shè)弦所在的直線(xiàn)與橢圓相交于、兩點(diǎn),由于點(diǎn)為弦的中點(diǎn),則,得,由題意得,兩式相減得,所以,直線(xiàn)的斜率為,所以,弦所在的直線(xiàn)方程為,即.故答案為:.【題目點(diǎn)撥】本題考查利用弦的中點(diǎn)求弦所在直線(xiàn)的方程,一般利用點(diǎn)差法,也可以利用韋達(dá)定理設(shè)而不求法來(lái)解答,考查計(jì)算能力,屬于中等題.15、【解題分析】
先設(shè)切點(diǎn),然后對(duì)求導(dǎo),根據(jù)切線(xiàn)方程的斜率求出切點(diǎn)的橫坐標(biāo),代入原函數(shù)求出切點(diǎn)的縱坐標(biāo),即可得出切得,最后將切點(diǎn)代入切線(xiàn)方程即可求出實(shí)數(shù)的值.【題目詳解】解:依題意設(shè)切點(diǎn),因?yàn)?則,又因?yàn)榍€(xiàn)在點(diǎn)處的切線(xiàn)為,,解得,又因?yàn)辄c(diǎn)在第四象限內(nèi),則,.則又因?yàn)辄c(diǎn)在切線(xiàn)上.所以.所以.故答案為:【題目點(diǎn)撥】本題考查了導(dǎo)數(shù)的幾何意義,以及導(dǎo)數(shù)的運(yùn)算法則和已知切線(xiàn)斜率求出切點(diǎn)坐標(biāo),本題屬于基礎(chǔ)題.16、【解題分析】
出場(chǎng)運(yùn)動(dòng)員編號(hào)相同的事件顯然有3種,計(jì)算出總的基本事件數(shù),由古典概型概率計(jì)算公式求得答案.【題目詳解】甲隊(duì)有編號(hào)為1,2,3的三名運(yùn)動(dòng)員,乙隊(duì)有編號(hào)為1,2,3,4的四名運(yùn)動(dòng)員,出場(chǎng)的兩名運(yùn)動(dòng)員編號(hào)相同的事件數(shù)為3,出現(xiàn)的基本事件總數(shù),則出場(chǎng)的兩名運(yùn)動(dòng)員編號(hào)相同的概率為.故答案為:【題目點(diǎn)撥】本題考查求古典概率的概率問(wèn)題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)3+3【解題分析】
(1)利用余弦的二倍角公式和同角三角函數(shù)關(guān)系式化簡(jiǎn)整理并結(jié)合范圍0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周長(zhǎng).【題目詳解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周長(zhǎng)a+b+c=3+3.【題目點(diǎn)撥】本題考查三角函數(shù)恒等變換的應(yīng)用,正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.18、(1);(2);(3).【解題分析】
(1)利用導(dǎo)數(shù)的幾何意義計(jì)算即可;(2)在上恒成立,只需,注意到;(3)在上有兩根,令,求導(dǎo)可得在上單調(diào)遞減,在上單調(diào)遞增,所以且,,,求出的范圍即可.【題目詳解】(1)因?yàn)?,所以,?dāng)時(shí),,所以切線(xiàn)方程為,即.(2),.因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以,且恒成立,即,所以,即,又,故,所以實(shí)數(shù)的取值范圍是.(3).因?yàn)楹瘮?shù)在區(qū)間上有兩個(gè)極值點(diǎn),所以方程在上有兩不等實(shí)根,即.令,則,由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,解得且.又由,所以,且當(dāng)和時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,是極值點(diǎn),此時(shí)令,則,所以在上單調(diào)遞減,所以.因?yàn)楹愠闪?,所?若,取,則,所以.令,則,.當(dāng)時(shí),;當(dāng)時(shí),.所以,所以在上單調(diào)遞增,所以,即存在使得,不合題意.滿(mǎn)足條件的的最小值為-4.【題目點(diǎn)撥】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值點(diǎn),不等式恒成立等知識(shí),是一道難題.19、(1)l:,C:;(2)【解題分析】
(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程直角坐標(biāo)方程和極坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換;
(2)由(1)可得曲線(xiàn)是圓,求出圓心坐標(biāo)及半徑,再求得圓心到直線(xiàn)的距離,即可求得的長(zhǎng).【題目詳解】(1)由題意可得直線(xiàn):,由,得,即,所以曲線(xiàn)C:.(2)由(1)知,圓,半徑.∴圓心到直線(xiàn)的距離為:.∴【題目點(diǎn)撥】本題考查直線(xiàn)的普通坐標(biāo)方程、曲線(xiàn)的直角坐標(biāo)方程的求法,考查弦長(zhǎng)的求法、運(yùn)算求解能力,是中檔題.20、(1)(2)見(jiàn)解析【解題分析】
(1)直接求出直線(xiàn)方程,與橢圓方程聯(lián)立求出點(diǎn)坐標(biāo),從而可得直線(xiàn)方程,得其與軸交點(diǎn)坐標(biāo);(2)設(shè),則,求出直線(xiàn)和的方程,從而求得兩直線(xiàn)的交點(diǎn)坐標(biāo),證明此交點(diǎn)在橢圓上,即此點(diǎn)坐標(biāo)適合橢圓方程.代入驗(yàn)證即可.注意分和說(shuō)明.【題目詳解】解:本題考查直線(xiàn)與橢圓的位置關(guān)系的綜合,(1)由題知,,則.因?yàn)?,所以,則直線(xiàn)的方程為,聯(lián)立,可得故.則,直線(xiàn)的方程為.令,得,故直線(xiàn)與軸的交點(diǎn)坐標(biāo)為.(2)證明:因?yàn)?,,所以.設(shè)點(diǎn),則.設(shè)當(dāng)時(shí),設(shè),則,此時(shí)直線(xiàn)與軸垂直,其直線(xiàn)方程為,直線(xiàn)的方程為,即.在方程中,令,得,得交點(diǎn)為,顯然在橢圓上.同理當(dāng)時(shí),交點(diǎn)也在橢圓上.當(dāng)時(shí),可設(shè)直線(xiàn)的方程為,即.直線(xiàn)的方程為,聯(lián)立方程,消去得,化簡(jiǎn)并解得.將代入中,化簡(jiǎn)得.所以?xún)芍本€(xiàn)的交點(diǎn)為.因?yàn)椋忠驗(yàn)?,所以,則,所以點(diǎn)在橢圓上.綜上所述,直線(xiàn)與直線(xiàn)的交點(diǎn)在橢圓上.【題目點(diǎn)撥】本題考查直線(xiàn)與橢圓相交問(wèn)題,解題方法是解析幾何的基本方程,求出直線(xiàn)方程,解方程組求出交點(diǎn)坐標(biāo),代入曲線(xiàn)方程驗(yàn)證點(diǎn)在曲線(xiàn).本題考查了學(xué)生的運(yùn)算求解能力.21、(1)證明見(jiàn)解析(2)【解題分析】
(1)連接,設(shè),連接.通過(guò)證明,證得直線(xiàn)平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的正弦值.【題目詳解】(1)連接,設(shè),連接,因?yàn)?,所以,所以,在中,因?yàn)?,?/p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電影電視劇發(fā)行合作合同
- 玻璃幕墻施工承包合同年
- 工程材料委托采購(gòu)合同
- 工程合同與招投標(biāo)
- 賣(mài)場(chǎng)商鋪?zhàn)赓U合同
- 燃?xì)夤こ虅趧?wù)分包合同協(xié)議書(shū)
- 施工承包合同書(shū)協(xié)議
- 電纜橋架安裝施工合同
- 廣告材料采購(gòu)合同
- 六安職業(yè)技術(shù)學(xué)院《技術(shù)創(chuàng)新和創(chuàng)業(yè)領(lǐng)導(dǎo)力》2023-2024學(xué)年第二學(xué)期期末試卷
- 強(qiáng)化學(xué)習(xí) 課件 第1章 強(qiáng)化學(xué)習(xí)概述
- 《鄧稼先》省公開(kāi)課一等獎(jiǎng)全國(guó)示范課微課金獎(jiǎng)?wù)n件
- 蘇教版二年級(jí)下冊(cè)科學(xué)全冊(cè)教案
- 挖掘機(jī)操作收藏手冊(cè)
- 教育家精神專(zhuān)題講座課件
- 了解綠化廢棄物的分類(lèi)和處理方法
- 節(jié)后復(fù)工安全教育培訓(xùn)內(nèi)容【5篇】
- EPC項(xiàng)目投標(biāo)人承包人工程經(jīng)濟(jì)的合理性分析、評(píng)價(jià)
- 項(xiàng)目投標(biāo)BIM方案(投標(biāo)專(zhuān)用)
- 2024年中考數(shù)學(xué)專(zhuān)題訓(xùn)練 專(zhuān)題10 截長(zhǎng)補(bǔ)短模型綜合應(yīng)用(知識(shí)解讀)
- 專(zhuān)利分析評(píng)議報(bào)告
評(píng)論
0/150
提交評(píng)論